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1 Introduction

This paper is the fifth in a series devoted to the numerical evaluation of multi-loop, multi-leg Feynman
diagrams. In [1] (hereafter I) the general strategy was outlined and in [2] (hereafter II) a complete list of
results was derived for two-loop functions with two external legs, including their infrared divergent on-shell
derivatives. Results for one-loop multi-leg diagrams were shown in [3] and additional material can be found
in [4]. Two-loop three-point functions for infrared convergent configurations were considered in [5] (hereafter
IIT), where numerical results can be found.

In this article we study the problem of deriving a judicious and efficient way to deal with tensor Feynman
integrals, namely those integrals that occur in any field theory with spin and non trivial structures for the
numerators of Feynman propagators. Admittedly the topic of this paper is rather technical, but it is needed
as a basis for any realistic calculation of physical observables at the two-loop level.

The complexity of handling two-loop tensor integrals is reflected in the following simple consideration: the
complete treatment of one-loop tensor integrals was confined to the appendices of [6], while the reduction of
general two-loop self-energies to standard scalar integrals already required a considerable fraction of [7]; the
inclusion of two-loop vertices requires the whole content of this paper. Past experience in the field has shown
the convenience of gathering a complete collection of results needed for a broad spectrum of applications in
one place. We devote the present article to this task.

While a considerable amount of literature is devoted to the evaluation of two-loop scalar vertices [8],
fewer papers deal with the tensor ones [9]; for earlier attempts to reduce and evaluate two-loop graphs with
arbitrary masses we refer the reader to the work of Ghinculov and Yao [10].

In recent years, the most popular and quite successful tool in dealing with multi-loop Feynman diagrams
in QED/QCD (or in selected problems in different models, characterized by a very small number of scales),
has been the Integration-By-Parts Identities (IBPI) method [11]. However, reduction to a set of Master
Integrals (MI) is poorly known in the enlarged scenario of multi-scale electroweak physics.

Our experience with one-loop multi-leg diagrams [3] shows that the optimal algorithm to deal with realistic
calculations should be able to treat both scalar and tensor integrals on the same footing. This algorithm
should not introduce multiplications of the tensor integrals by negative powers of Gram determinants, as
the latter’s zeros, although unphysical, may be dangerously close to the physically allowed region. The
numerical quality of tensor integrals also worsens if they are expressed in terms of linear combinations of
MTI; the coefficients of these combinations have zeros corresponding to real singularities of the diagram [12],
and the singular behavior is usually badly overestimated leading to numerical instabilities.

From the point of view of numerical integration, it really makes little difference if tensor integrals are
expressed in terms of generalized scalar configurations, or in terms of smooth integral representations which
do not grant any privilege to a particular member of the same class of integrals. Of course, at the end of
the day we are always left with the problem of numerical cancellations (an issue related to the strategy of
trading one difficult integral for many simpler ones), and the optimal algorithm should minimize the number
of smooth integrals in the final answer. There is no evidence that employing our approach one encounters
more objectionable features than in reducing everything to MI; rather, in our opinion, the feasibility of the
latter has still to be proved in the complex environment of the full-fledged Standard Model (SM), even if
there are complete applications in QED [13] and in QCD [14].

We have not included four-point functions in the classification, although they are certainly needed to
compute physical observables for fermion—anti-fermion annihilations or scattering processes, not yet a top
priority in handling electroweak radiative corrections in the SM at the two-loop level. Note, however,
that there is intense activity in (QED) QCD scattering processes [14] and [15]. Addressing the full set of
corrections is, by necessity, a long term project which we undertake step-by-step (an attitude which should
not be confused with narrow focusing).

A large fraction of physical processes, in particular gauge bosons decays into fermion—anti-fermion pairs
and accurate predictions for gauge boson complex poles, only require two- and three-point functions. Also
for the analysis of the two-loop SM renormalization [16], two—point functions and vacuum bubbles are
essentially all we need. Indeed, in order to evaluate the Fermi coupling constant G from the muon life-
time we always work at zero momentum transfer and neglect terms proportional to mi /MV2V7 therefore,



all diagrams contributing to this process (boxes included) are simply equivalent to vacuum bubbles, i.e.
generalized sunset integrals evaluated at zero external momentum.
Feynman diagrams are built using propagators and vertices. In momentum space, the former are repre-
sented by
N
N ()
p2+m?—id
where 6 — 04, m is the bare mass of the particle and N(p) is an expression depending on its spin. Our
general approach towards the numerical evaluation of an arbitrary, multi-scale, Feynman diagram G is to
use a Feynman parameter representation and to obtain, diagram-by-diagram, an integral representation of

the following form:
1
Yy {B_G / dacg(:v)] , (2)

where z is a vector of Feynman parameters, S is a simplex, G is an integrable function (in the limit § — 04)
and B¢ is a function of masses and external momenta whose zeros correspond to true singularities of the
diagram G, if any. The Bernstein-Tkachov (hereafter BT) functional relations [17] are one realization of
Eq.(2), but in our previous work we considered different possibilities.

Smoothness requires that the kernel in Eq.(2), together with its first N derivatives, should be a continuous
function, with N as large as possible. However, in most cases we will be satisfied with absolute convergence,
e.g. with logarithmic singularities of the kernel. This is particularly true around the zeros of B, where the
large number of terms, induced requiring continuous derivatives of higher orders, leads to large numerical
cancellations.

As we stressed earlier, this article is by its own nature rather technical, but we tried to avoid as much
as possible a layout which overwhelmingly privileges long lists of formulae in favor of interleaving the in-
dispensable amount of technical details with examples. For completeness, however, we inserted Appendices
where the reader can find a complete summary of the results occurring in the reduction procedure.

The results presented in this paper are intermediate steps in any physical calculation; although the
presentation is organized through a series of concatenated formulae that can be used recursively, further
derivations on the part of the reader are required in order to obtain analytic or numerical results for a
physical quantity.

The outline of the paper is as follows: in Section 2 we recall our notation and conventions. In Section 3
we review the problem of gauge cancellations and the use of Nielsen identities, while in Section 4 we illustrate
all preliminary steps that should be undertaken in any realistic calculation (like projector techniques). The
reduction of two-loop two-point functions is discussed in Section 5 and a complete list of the results is given in
Section 7. The role of integration-by-part identities is discussed in Section 6. In Sections 8-11 we present the
full body of our results for two-loop tensor integrals. (Rank three tensors for three-point functions are shown
in Section 9.7.) Conclusions are drawn in Section 12. Additional material is discussed in the Appendices; in
particular, the treatment of generalized one-loop functions is discussed in Appendix A. A concatenated set
of easy-to-use formulae for the reduction of two-loop three-point functions is summarized in Appendix B;
symmetries of diagrams are presented in Appendix C.

2 Conventions and notation

Our conventions for arbitrary two-loop diagrams were introduced in Sect. 2 of I. Specific conventions
for three-point functions were introduced in Sect. 2 of III; vertex topologies were classified in III and are
reproduced, for the reader’s convenience, in Figs. 6-11. Here we briefly recall the terminology.

A generalized one-loop diagram will be denoted by

_ N

Gur oo ({0 s {phwe s {mhy) = & / ¢, - au [ 5 (3)
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where n = 4 — ¢, n is the space-time dimension,' 4 is the arbitrary unit of mass, IV is the number of vertices,
and

{afy=a1, -, ay, [i]c;:(q—i-ij)Q—i—mf, po=0. (4)

The one-loop two-, three-,... point functions will be denoted by G = B,C, - - -
A generalized two-loop diagram is defined with arbitrary, non-canonical, powers of its propagators; it can
be cast in the following form

Glede IR e (oo g | Vl, s {nt ok 02}, P pY s {mbasere) =

2(4 n) a a+c a+c+b
— [ Tade H Qe H do, [L02+m) = [[ 2 4+m)~ [[ R +md)~%  (3)

=1 Jj=a+1 l=a+c+1

where a,b and c indicate the number of lines in the ¢;,¢2 and ¢ — g2 loops, respectively. For generalized
functions we use & = Y 7| a; etc, while for standard functions (i.e. those where all the propagators have
canonical power —1), « = a, 8 = b and v = ¢ and we will write G*A7 . Furthermore,

kzZQI'FZ;V:l?]Zl]p], 7;:1,...,G7
kzZQ1_Q2+Z;V:1nzlg2pga 7;:@+1,...,(L+C,
ki=q2+ Y74 1505 i=a+c+1,...,a+c+b,

where n® = £1, or 0, and {p} is the set of external momenta. Diagrams which can be reduced to combinations
of other diagrams with a smaller number of internal lines will not receive a particular name. Otherwise, a
two-loop diagram will be denoted by G*?7, where G = S,V, B etc. stands for two-, three-, four-point etc.
For scalar integrals we will use the symbol GS‘B 7 = G*#7(0/0;...). Following Eq.(5) diagrams are further
classified according to non empty entries in the matrices n° and in the list of internal masses.

Integrals: To keep our results as compact as possible, we introduce the following notation (z¢ = yo = 1)
where C' stands for (hyper)cube and S for simplex,

1 "1 n2 Yji—1
/dcs({x}?{y})f(xla7xn17y15ayn2):/ HthH/ dyj xl"”’xnlaylv"'ayn2)a
0 =1

/ dSn({a}) f(z1, -+, xn) _f[l /OM da; f(x1,---,2n),
[ dCuah ) = / 1_1 dzif (o, ). 6)

Also, the so-called '+’'-distribution will be extensively used, e.g.

/dC ({z})/o f. {2} {ZD ) /dC ({Z})/o f(z {z}) 104
/dC ({z})/ f@. {2 {Z}) ) /dC ({Z})/o f(a {Z}) 1Lz

T r—1
/dOn({z}) /01 d“’w = / 1 (=) /01 . {f(a?,{z}) _];(0,{2})} ln":z:' -

The last relation in Eq.(7) is used when evaluating integrals of the following type:

Lo f@) _fo) [t fl) b f(@) na 2
/Od:c————l—/o dr —= —e/o d:cTL—I—O(e).

xl—e € T ’Jr
1In our metric, space-like p implies p2? = p2 -|—p?l > 0. Also, it is p4 = i po with pg real for a physical four-momentum.




Lists of arguments: To avoid long lists of arguments we introduce the symbol

{m}ijo=my, my, -+, my, exactly in this order. (8)

Miscellanea: We often need combinations of squared masses and momenta,

2 2 2 _ 2 2 2 .2 2 2
lZJk_pz_mJ +mk, lP]k_P —m] —i—’ITI,k7 lpjk_p _m]+mk7
2 _ .2 2 2 2 _ .2 2 _

My, = My — My +my, m;; =m; —mj, Dij = Pi * Pj,

(@)ij =pij, D=detG=pips—(p1-p2)?, D1=pip3, Ds=piap3, D3z=piapi, (9)

and of Feynman parameters,

1- _
T=1-2, Ti=l-xz;, T=1—-vy, etc, X=—-t=1-X (10)
1—172
}/Z:—(l—yz—i-ng), ?Qzl—yQY, Hizl—Il—.IQ}/i, 121,2 (11)
m2 m2
F(x,y) = pia® +2p1azy + p3 9>, m2 = 71—1— 1—2:17' (12)

Symmetrized tensors: We define (partially) symmetrized tensors as follows (dng is the Kronecker delta
function),

{p k},uz/ =Pu k, + Dy k,uv {517}&[17 = 506ﬁp’>' + 506’71)5 + 6[371)06’
{ppk}aﬁ'y = Pa Pg k’y + Pa Py kﬁ + py P ka
{ppk}a'y |8 = pozpﬁkv +pvpﬁkou {6p}aﬁ |y = 5&7 ps + 567 Pa- (13)

Contraction: If p is a vector and f is a function, we introduce the symbol

Floo po )=l (e ), Floo o) =M F(oo o, o). (14)
MS factors: Finally we remind the reader of the definition of M S factors,
2 o 1 2
AUV:”y—i-lnﬂ'—lnu—, Ayy == —Ayy, w:'u—, (15)
| P2 | € T

where v = 0.577216 - - - is the Euler constant. In one-loop calculations the definition A,y = 2/e— Ayv
is often employed. Finally some authors prefer to define n =4 — 2e.

2.1 Definition of one-loop generalized functions

Products of one-loop functions occur in the reduction of two-loop diagrams; generalized one-loop functions
are defined in Eq.(3), specific examples of one- and two-point (scalar) functions are

B d"q
Ap(a;m) = 12 / m ) Ao(a; [mi, my) = Ao (o mi) — Ao(a; my),
pe d"q
BO ) ; 3 ) = - ' 1
(o 85 pyma,maz) = 275 / (¢* +mP)*((q +p)? +m3)? 1o

Note that we always drop strings like 1, 1, - - - in the argument of standard functions, namely, we write A,(m)
for Ay(1,m) etc. Tensor integrals are:

pe d"qq _ ,
in? / (¢ +m?) (g +Mp)2 gy~ D@ Bipdmh) (17)



o 4" 4.4 _ : .
iﬂ'z / (q2 + m%)a ((q +p)2 + m%)ﬁ - B21(a767 D, {m}12)pu Pv + B22(a767 D, {m}12) 6;“17 (18)

their reduction is given in Section 7. Generalized one-loop three-point functions are introduced as follows:

3

. !
Cosoosa({abas pr.pa fmhizs) = 25 [ ava T a, [T 07 (19)
j=1 i=1

with [{] = Q7 + m? and Q; = ¢+ po + -+ + pi—1, po = 0. In particular,

Co(pr, pa, {mzs) = 12 / O — G N (20)
im [¢? +mi][(q + p1)* + m3][(g + p1 + p2)* + mj]
The integrals of Eq.(19) can be reduced, for example,

Cu{a}s; p1,p2, {mhies) = Ci({ats; ) piu + C({a}s 5 -+ ) P2y, (21)

Cuw({ats; p1,p2,{m}i23) = Cor({ats; -+ ) prupiv + Coa({ats; -+ ) poppa
+ Czs({a}3 ;o ) {plp2}uu + 024({(1}3 ;o ) 6MU7 (22)

where the symmetrized product is defined by Eq.(13); for the reduction we refer to Appendix A.
For completeness we also define generalized one-loop four-point functions, although they are not needed

in this article : .\

. !
H n q—a;
Dy ({a}as p1,p2, p3, {m}i2sa) = T2 / d"q H Au; H[l] % (23)
j=1

=1

etc. Once again [i] = Q? +m?2, Q; = ¢+ po + -+ + pi_1 with pg = 0.

2.2 Alphameric classification of graphs

In our conventions any scalar two-loop diagram is identified by a capital letter (S,V, etc.) indicating
the number of external legs, and by a triplet of numbers (a, 8 and 7) giving the number of internal lines
(carrying internal momenta qi,q2 and ¢; — g2, respectively). There is a compact way of representing this
triplet: assume that v # 0, i.e. that we are dealing with non-factorizable diagrams, then we introduce

5 = Yomax [Qmax (8= 1) +a = 1] +7 (24)

for each diagram. For G = V we have apax = 2 and ypax = 2. Furthermore, we can associate a letter of the
English alphabet to each value of k. Therefore, the following correspondence holds:

121 - FE, 131 —1, 141 — M, 221 —G, 231 — K, 222— H. (25)
For G = S we have amax = 2 and Ymax = 1, therefore
11— A, 121—-C, 131—FE, 221 —D. (26)

This classification is extensively used throughout the paper and motivated by the unavoidable proliferation
of indices; the reader not familiar with it should remember that storing the elements of a matrix into a vector
is a well-known coding procedure (e.g. in Fortran). Note that in IT and in III this convention was not yet
used and the correspondence of results is simply provided by Egs.(25)—(26).



3 Tensor integrals and gauge cancellations

Any Feynman integral with a tensor structure can be written as a combination of form factors

Tmax

GHl pN T Z st Fispypns (27)
i=1

where the Fj, ,, ..., are tensor structures made up of external momenta, Kronecker delta functions, e-tensors
(which will cancel in any CP-even observable) and elements of the Dirac algebra; the scalar projections G% ad-
mit a parametric representation which is equivalent to the one for the corresponding scalar diagram but with
polynomials of Feynman parameters occurring in the numerator. Once we have an integral representation
for the primary scalar diagram, with the desired properties of smoothness, then, analogous representations,
with the same properties, also follow for the induced scalar projections. Therefore, from the point of view
of numerical evaluation there is really little difference between scalar and tensor integrals.

However, there is a problem due to the fact that we are dealing with gauge theories with inherent gauge
cancellations which do not support a blind application of the procedure just described. A very simple
example will be useful to illustrate the roots of this problem. Consider the one-loop photon self-energy in
QED and express the result in terms of scalar one-loop form factors [6]; we obtain

H;fUJ = H{(SHV + ngupua (28)

=4 62{(2 —n)B — p? {BQI n Bl} —m? Bo}7 ) = —8¢? [Bm + Bl} , (29)

where e is the bare electric charge and B, etc. are the standard one-loop functions of [6], all with arguments
(p?;mg, ms). The gauge invariance of the theory is controlled by a set of Ward—Slavnov—Taylor identities [18]
(hereafter WST), one of which requires H;fw to be transverse; this hardly follows from expressing the form
factors in parametric space followed by some numerical integration. Rather, it follows from a set of identities
that one can write among the standard one-loop functions (B,, etc.) directly in momentum space, the so-
called reduction procedure (“scalarization” in jargon). This procedure, in its original design, is plagued by
the occurrence of inverse powers of Gram determinants whose zeros are unphysical but sometimes dangerous
for the numerical stability of the result.

There is another example where gauge cancellations play a crucial role. Suppose that we decide to work
in the so-called R¢ gauges with one or more gauge parameters which we will collectively indicate by &:
the expected £ independence is seen at the level of S-matrix elements and not for individual contributions
to Green functions. From this point of view, any procedure that computes single diagrams and sums the
corresponding numerical results, without controlling gauge cancellations analytically, is bound to have its
own troubles.

These two rather elementary considerations suggest the following strategy: first impose all the require-
ments dictated by WST identities and see that they are satisfied. At this point organize the calculation
according to building blocks that are, by construction, gauge-parameter independent.

The first step requires some form of scalarization (which, as we saw, may be numerically unstable), but
the perspective is different: scalarization is now needed only to prove that certain combinations of form
factors are zero, and any occurrence of Gram determinants does not therefore pose a problem.

In the second step we need to control the ¢ behavior of individual Green functions; a possible tool is
represented by the use of the Nielsen identities (hereafter NI) [19]. Typically we will consider the transverse
propagator of a gauge field:

o 1 5,ull - p,upu/s
" em)tios = M+ II(E, s)

(30)

where p? = —s, My is the bare mass of the particle and TI(¢, s) is the self-energy. The corresponding NI
reads as follows:

0]
8_51_[(5’8) = A(&S) H(€75)7 (31)



where A is a complex, amputated, 1PI, two-point Green function and the complex pole is defined by
5— Mg +T11(&,3) =0, de5=0. (32)
Let us consider now the amplitude for ¢ — V' — f, where V is an unstable gauge boson and i/f are
initial/final states. The overall amplitude becomes
S VEGB) V(S
As) — e HOWE)
' s—§ 141II'(s)

+ non-resonant terms, (33)

where it is understood that the vertex functions V} and V;” include the wave-function renormalization factors
of the external, on-shell, particles. It has been proved that
d PN e .

P [1 410 (s)} VE(s) = 0; (34)
this combination is the prototype of one of the gauge-parameter independent building blocks that are needed
to assemble our calculation of a physical observables. All gauge-parameter independent blocks will then be
mapped into one (multi-dimensional) integral to be evaluated numerically.

4 Projector techniques

Any realistic calculation requires several steps to be performed before we can actually start to compute
diagrams or sums of diagrams; in all of them, some action can be taken in order to simplify the structure of
the amplitude in some efficient way. Much work has been invested in this area and we refer to recent work
of Glover [20] for an exhaustive list of references.

Here we focus on few examples. Consider, for instance, the matrix element for the decay of a vector
particle V into a fermion-antifermion pair, V(P;) — f(p+)f(p—) (all particles are on their mass-shell);
instead of decomposing all tensor integrals into form factors, we first decompose the vertex V), into the
following structures,

M =1u(p-) e-Volpy) = u(p-) [Fv f+Fafvs+Fs Po e+ Fp P eys| v(ps), (35)
where €, = €,(Py) is the polarization vector for the V particle, subject to the constraint e - Py = 0
(Py = py £ p_). We also introduce projectors to extract the form factors appearing in Eq.(35) [20]
> PM=F, (36)
spin

where I = VA, S or P. The explicit solution for the projectors is obtained considering four auxiliary
quantities

Py =0(py) fulp-), Py = v(py) 5 ulp-),

Py=e-P_o(py)ulp-), Pr=e-P_v(py)ysulp-).

Let us define 3,, = M? —4m?, where M is the mass of the vector boson V and m is the mass of the fermion
f: we get

1 m 1
Po=————_ _|P 2'—P} PP=———— P
VT TR T T,
1 m )
Po=——— Py, P:—'—{P — |4m? —2M2}P}, 37
: 2 M2 5y, ! ’ ZM2(2_W)BM 1+2mﬁM " —l—(n ) ’ ( )

thus providing the scalar coefficients F;. For example,

1 1 1

Fp=—=MF, Fr=— g3z A Vibi— oom A AP VAL
Tm im
— — AP, VA, — ——— A_P_-VA 38
e + + M2ﬁM +5 ( )



where Ay = —ipy — m and A_ = —ip_ + m. This procedure completely saturates indices and allows
us to consider only integrals with positive powers of scalar products in the numerators. Then a reduction
procedure follows and we will show that the final answer contains only generalized scalar integrals. For
a discussion on projector techniques in conventional dimensional regularization or in the 't Hooft-Veltman
scheme [21] we refer again to [20].

Another example we want to consider is the amplitude for s — =+, where s is a generic scalar particle;
for this case we follow the procedure of Binoth, Guillet and Heinrich [22] and introduce the vectors

i 2
Tiu = Z pjl“ Riu = Z GZ_Jl Tjﬂ, Gij = 27‘1' 'T‘j. (39)
j=1 j=1
The square of the s — v vertex is further decomposed into

2
V#y = FD 5#1, + Z FP,ij Ti,u ’I”jl,. (40)

ij=1

The form factors of this decomposition are expressed through the action of projectors,

Fp =PV, Fpij = Pﬁy’;j Viw, (41)
Y132 1 v woy—1 v puv YOO Y% 1 -1 puv
Pt Z?[é —2 G, PR =4 |RIR - G PD] (42)
These projectors have the following properties:
1 v v 1
Ri'Tj:§5ij7 PD Til,:(), PD PD’#V:m' (43)

The whole procedure is better illustrated in terms of an example, an [-family contribution to the decay
H — ~7, see Fig. 1. The corresponding integral is

D2

<

N om

Figure 1: [-family contribution to the decay H — ~7~. Internal dotted lines represent a Higgs-Kibble ¢-field, while
solid ones indicate a W-field.

M
VI = g5 sy Twuzf / d"q1d"go { [(qz +q) - (p2—p1) — 6 — @ 'Q2} oM
+2 [qﬁ‘ @+ (@ + @) p! — (¢ + iD)”pS} +d5 (2 —q)" + (@ + )" P — (¢ + qz)”p‘f}

X [(qf +M2) (1 — q2)% (a3 + M2) (g2 +p1)* + M2) (g2 + P)* + va)} o (44)



where sg (cg) is the sine (cosine) of the weak-mixing angle. Terms containing ¢3, ¢1 - ¢2 and qo - p1 are
immediately eliminated from the final answer. Consider now terms with ¢4 (for those with ¢f" there is an
analogous argument); with straightforward substitutions we obtain

/Fqg — Flpﬁb-i-szg — .7:17#4—.7:27“5, (45)

where with F', etc we indicate some combination of form factors of the V' family whose explicit expression
is not relevant for our discussion at this stage. When we project with P5” or with R;, it follows that

[Frre — Ym0
/Fqugu — Y FiRi-r; — T (46)
J
When we have a term with ¢4 ¢5 and project with P5” it follows
/ FPWakagy — [Z Figrirt + F 5“"} Py — FaPpuy = Fa. (47)
ij

The number of form factors may be further reduced by requiring that on-(off-)shell WST identities hold.

The procedure that we just illustrated can be easily generalized to other situations; consider, for instance,
the off-shell vertex corresponding to V7, — V5 4+ V3 where the V; are gauge bosons. By off-shell we mean that
the sources J!/ emitting/absorbing the vector bosons are not physical (therefore 9, Ji! = 0 is not assumed)
and are not on their mass-shell; this choice is also needed when two of the particles correspond to (idealized)
stable, physical, vector bosons and we want to check a WST identity. In full generality we write the following
decomposition of the vertex:

2 2
VHeB — Z [Ai oM riﬁ + B; 68 re+C; §ob rf} + Z Diji rt! Ty Tf- (48)
i=1 ijk=1
Using the relations
1 1 — v v - v
Rz"Tj=§5ij, Ri'Rj:§G,L-jl, G" =RFGR” =71 G Y, (49)

we introduce the following projectors:

prob — gua R _ggre RE - prof — guB pe _ o gro g pref — §of it _ 9 GoB RIY)
1
2(n —2)

Their action can be represented as

L’ = RERYR) —

pijl —

|G P 4+ Gt Pl + G P, (50)

2 2 2
Ai=——5 PL Vias,  Bi= p— Pt Vias, Ci= p— PL Vias,  Dijt =8Phifi Viag.  (51)
At the level of triple vector boson couplings we encounter an additional complication, namely CP-odd form
factors are absent only in the total amplitude but not in single diagrams. Therefore, one should write a more
general form for the vertex, including CP-odd terms:

2
s — Z [Ei e\ o,y a) 2 + Fre(\ oy, B) 18 + Gy e(\, 0, a, ) rﬂ TN T20- (52)
i=1
The following property holds: P“*? V. ,,n5 =0, for I = A, B,C and ngﬁ Ve,nap = 0.

For external Proca fields (and also for Rarita-Schwinger fields), however, our preference will be for
other methods [23] where the wave-functions for vector particles can be entirely expressed in terms of Dirac
spinors with arbitrary polarization vectors allowing for the implementation of projector techniques for helicity
amplitudes [20].
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5 Techniques for the reduction of two-loop two-point functions

It is well-known that the reduction of two-loop tensor integrals can be achieved up to two-point functions
if we are ready to enlarge the class of scalar functions. The original derivation is due to Weiglein, Scharf and
Bohm [7]; for completeness we review here the necessary technology and refer the reader to Appendix B for
the full list of results.

Standard reduction to scalar integrals amounts to writing down the most general decomposition of tensor
integrals, and to transform this relation into a system of linear equations whose unknowns are the form factors
and the known terms follow from algebraic reduction between saturated numerators and denominators.

The well-known obstacle on the road to scalarization of multi-loop diagrams is represented by the oc-
currence of irreducible numerators, i.e. those cases where a ¢; - p term appears in the numerator, but no
parameterization of the diagram can be found where the inverse propagators ¢ + m? and (q; + p)? + m?
simultaneously occur. For any two-loop self-energy diagram with I propagators there are 5 — I irreducible
scalar products. To illustrate the procedure we start considering some simple example, e.g. a vector integral

mi

A
N

ms
Figure 2: Scalar diagram of the S*-family, the so-called sunset (or sunrise) configuration.

of the S“-family, depicted in Fig. 2,

2e

SHwl05 p,{m}123) = /;4 / d"q1 d"q2 [1][2(1]%’ (53)

where we introduced a shorthand notation for the inverse propagators:

=g +mi, [2la=(a—q+p)’+ms [Bla=q+mi (54)
Apparently we meet an irreducible numerator, but we can generalize the procedure considering an intermedi-
ate reduction with respect to sub-loops, a technique originally introduced in [7]. In the following subsection
we briefly illustrate this technique.

5.1 Reduction to sub-loops
Consider Eq.(53): we may write

n dip
dqp ——— =X — . 55
T, = (@2 =) (55)
If we multiply both sides of Eq.(55) by (g2 — p), and use the identities
. . 1 2 2 _ 2 . 2 2 2 2
QP _Q (J2+_[1_Q1+QQ q2 p+m2+p}7 C]_lzl_ﬁ7 (56)
(2] 2], 2 (2] [1] (1]
we can solve for X, obtaining
1 m2,— [0, 1 1
X:———/d" Mip = Bla =~ ] 57
= ) o e, e o7

where a new propagator has made its appearance, [0], = (g2 — p)?. We then use a second pair of identities,
_m

Bla Bl

@ p 1[1_q§+p2] @

2 [0].4

o, 2 (58)
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to obtain the following result:

1 1
S4(p|0; p,{m}i23) = 3 S0 s p, {m}i3) + 1 Sy oy, (59)

A _ 2 m_% (e} m_%2 _ A
Sa = Mg ( p2 + 1) So (pa {m}127 O; mB) + ( p2 )So (p; {m}123)

2
_ Mg

- L aims)]. (60)

20,0, fm}2) = Ao(ima,ma) [(1+ 220) Bulp.ms,0) + =

In Eq.(60) we used generalized one-loop scalar functions defined in Eq.(16) and

2e
SS(p,{m}1234) = /;4 / d"qud"q m7

(61)

where the propagators are [2]o = (q1 — q2)*> + m3, [3]c = ¢3 +m3 and [4]. = (g2 + p)? + m3. Henceforth we
continue our derivation for S*(0| u; p,{m}123) and write another equation,

n Q2u
dhgo — 22—y . 2
/ @ oL = (@1 +p)us (62)
a solution for Y, is obtained,
1 1 m3, — (0] 1 1
Y, = — = d" 32 Mlaa - + — 1, 63
! 2 [0]a / qQ{ [2]4[3] 2] [3]J (63)

with a new propagator defined by [0],. = (g1 + p)?. It follows that
1 1
S0 s p {mhiog) = 5 5% (|05 p, {m}res) + 757 Py (64)

A 2 m% c m§2 A
Sp = —m3s (p_2 +1) 55 (p, {m}s2,0,m) — (p—2 —2) 57 (p, {m}123)

2 2
m m 1
+ 22 520, (m}sa) + Aul(ma. me]) [(1+ ) B(p. . 0) + 5 Ay(m)] (65)
Therefore, using the system of Egs.(60)—(65) we can solve for both vector integrals in terms of scalar functions.
The full list of results will be given in Section 7. Already from this simple example we see the appearance
of generalized scalar loop integrals in the reduction of tensor ones. In the next Section we present the strategy
for their evaluation and discuss the general case based on a special set of identities.

6 Integration by parts identities and generalized recurrence relations

A popular and quite successful tool in dealing with multi-loop diagrams, in particular those contain-
ing powers of irreducible scalar products, is represented by the integration-by-parts identities (hereafter
IBPI) [11]. It is well-known that arbitrary integrals can be reduced [24] to an handful of Master Integrals
(MI) using IBPI [11] and Lorentz-invariance identities [26].

For one-loop diagrams IBPI can be written as

0
d"g —— F S =
/ q o [v# (¢,p,m1---)| =0, (66)
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where v = ¢,p1 -+, pe, and E is the number of independent external momenta. By careful examination of
the IBPI one can show that all one-loop diagrams can be reduced to a limited set of MI. Here we would like
to point out one drawback of this solution. Consider, for instance, the following identity [25],

. 2 2) {(n_?’) (m%_mg_p2)Bo(Pam17m2)

By(1,2; p,m1,ma) = N—p?, mZ,m2)
9 1> 2

2 2 2
+(n—2) [Ao(ml) —~ % Ao(mz)} } (67)
ma
where \(,y,z) is the familiar Kéllen lambda function A(x,y,2) = 2% + y* + 2% — 2zy — 222z — 2yz. The
factor in front of the curly bracket is exactly the BT-factor associated with the diagram; from the general
analysis of [3] we know that at the normal threshold the leading behavior of B,(1,2) is A='/2, so that the
reduction to MI apparently overestimates the singular behavior; of course, by carefully examining the curly
bracket in Eq.(67) one can derive the right expansion at threshold, but the result, as it stands, is again a
source of cancellations/instabilities. Our experience, e.g. with one-loop multi-leg diagrams [3], shows that
numerical evaluation following smoothness algorithms (e.g. Bernstein-Tkachov functional relations [17]) does
not increase the degree of divergence when going from scalar to tensor integrals.
The IBPI for two-loop diagrams can be written as

0
/dn(hdnfhﬁ b F(q1,q2,{p},mi---)| =0, a=¢;, b=gqi,p1-,Pr, (68)
m

where ¢ = 1,2, and E is the number of independent external momenta. Again, using IBPI, arbitrary two-
loop integrals can be written in terms of a restricted number of MI. The problem remains in the explicit
evaluation of the MI; in the following of this Section we want to show that the solution is purely algebraic
and, at the same time, we will discuss the relationship with our approach. Consider again the scalar and the
two vector integrals in the S*-family: for them we have

SA0]0; p,{m}123) = S, S (w05 p,{m}i2s) = S{ pu, S*(0]p; p,{m}ti2s) = S3 p. (69)

Introducing the notation
1 1 —€/2
/ DS, = / dx / dy [:v (1- x)} ye/2 (70)
0 0

we derive the parametric representation for the scalar and the two vector integrals:
St=wT(e—1) / DS, P (z,y) xi_e(ac, Y), (71)

where T (z) denotes the Euler gamma function, w is defined in Eq.(15) and where we introduced the auxiliary
polynomials
Py =-1, Pl =xz(1-y), P =—y. (72)

The quadratic form y, in Eq.(71) is given by x, = —p?y* + (> — m3 + m2) y + m3, with m?2 defined in
Eq.(12).

The evaluation of the scalar integral was discussed in [1] and can be easily extended to cover the two
remaining cases. This simple example can be fully generalized, thus proving that any smoothness algorithm
designed for scalar integrals will also be effective to deal with tensor ones; physical observables can be
evaluated without using a reduction procedure. Needless to say, however, that when cancellations are at the
basis of the result — for instance when testing the WST identities of the theory — scalarization should be
attempted; indeed, in these cases the goodness of the result depends crucially on our capability to express
the whole set of graphs in terms of a minimal set of integrals.

One way of deriving this result is purely algebraic: to achieve scalarization, which is equivalent to express
irreducible tensor integrals in terms of truly scalar functions, we write down generalized functions

2(4—n) 3
galaslas (n; p,{m}ia3) = K — / d"qrd" g H (i), (73)
i=1
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with [1], = [1], which are defined for arbitrary space-time dimension n. Subsequently we fix n to be
n =73 ,0;+1— e and obtain

a|az|a -1 -3 a+te — — —€
sgles! 2(Tb;p,{””b}lzs)__l_[.(l“(a-)) Wizt /dCQx P2 (1 — ) P22 (1 —y)PsyP 217 (T4)

where w is defined in Eq.(15) and where we introduced powers
ppr=1l4+a1—as—as+e po=14+as—a;—as+e ps=as—1, pgy=a;1+as—az—3+e. (75)

According to the work of Tarasov [27] the content of Eq.(74) can be interpreted by saying that we have a
scalar integral in shifted space-time dimension and with non-canonical powers of propagators; equivalently,
we may interpret it as an integral in the canonical 4 — € dimensions, with all powers in the propagators equal
to one but with polynomials of Feynman parameters in the numerator. To formally show this equivalence

we write
2

St=3" Wk S9I (nyp {mYs), i=1,2, (76)

j=1
with n; = a; + 5 +v; + 1 — ¢, and fix all coefficients and exponents in order to match Eq.(72). A solution
is therefore given by a; = 1,61 = 2,71 = 2, or by as = 2, 02 = 1,72 = 2, with coefficients k117 = —1, k12 =0
and k21 = 0, k22 =1.

Note that, starting with two-loop vertices and due to the presence of irreducible scalar products, we
should abandon the term “scalarization” in favor of a more general concept, namely the reduction to a
minimum number of functions that are needed to classify the problem at hand. One can hence adopt a
reduction to scalar integrals in shifted dimensions, followed by a solution of generalized recursion relations [27]
(which include the IBPI method as a particular case) reducing the large set of integrals to relatively few
MI. Alternatively, we can decide to relate the form factors to truly scalar integrals in the same number of
dimensions and belonging to contiguous families, and to integrals with contracted and irreducible numerators
for which a numerical solution is available; the quality of this latter numerical solution is as good as the one
for the scalar configurations.

The two procedures are algebraically equivalent and preference is, to some extent, a matter of taste,
although the power of a procedure can only be justified a posteriori by the goodness of the corresponding
result. As a matter of fact, a reduction to master integrals is notoriously difficult to achieve when the problem
is characterized by several scales. For completeness we stress that Davydychev [28] and, later on, Bern, Dixon
and Kosower [29] gave expressions for one-loop tensor integrals with shifted dimensions; Campbell, Glover
and Miller [30] discovered good numerical stability for one-loop integrals in higher dimensions; and a simple
formula expressing any N-point integral in terms of integrals in higher dimensions was given by Fleischer,
Jegerlehner and Tarasov [31].

An example of reduction of generalized functions with the help of IBP techniques is provided by the well-
known result that all generalized scalar sunset diagrams with zero external momentum (i.e. vacuum-bubbles)
can be fully reduced. To see this we first introduce
MQE
T

Sy ({a}s; 0,{m}123) =

3
/ e [ lito = 02 (77)

where [i], is defined in Eq.(54) but with p = 0 and [1], = [1]. IBPI reduce all functions in this class to
combinations of S2(1,1,2; 0,{m}123) and products of one-loop integrals. For instance we obtain

1
Sy ({a}s; 0,{m}123) = —— S, ({a}3; 0, {m}123), (78)
Miso
etc, with
A )‘(m%vmgvm%) A n—2
510, {m}rza) = LTI G2(1,1, 250, {mbras) + S [ As(ma) Ay(mo)
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2

1 m2  m3 1 m2  m3
(1= 28 22) o o) (28 22) o ).
n—271
S(2,1,13 0, {mbiag) = mbyy (11,25 0, {m}ias) + T | —5 Ao(ma) Ay(ms)
3
1 1 1
= o Aol A(mz) + (m—% - m_g) Ao(ma) Ag(ma)]
n—2 1 1
812,15 0, {m}iag) = miyg SH(L1,23 0, {m}ias) + 25 [ (3 = =) Au(ma) Ay(ma)
2 3
1 1
= o Ao(m) Ao(ma) + 5 Ao(ma) Ao(ms)|. (79)

etc. The number of terms in the reduction tends to increase considerably for higher powers in the propagators
of the generalized sunset functions but, as we said, all of them can be expressed through the (1,1, 2) sunset
integral and products of one-loop Ay-functions.

7 Reduction for tensor two-point functions

In this Section we give a full list of results following the method of Weiglein, Scharf and Bohm [7] as
derived in Section 5. Scalar two-loop two-point functions are defined by

A I . 1
S (p, {m}123) = p— /d q1d" gz NERER
o U
Sg (p, {m}1234) = p— /d g1 d"q R Bl A’
b I . 1
S0 (i) = 5 [ oo G
P I . 1
St mbe) = 55 [ 0 e 0
with propagators
M =qg +mi, [2la= (0 —q+p)?+mi [Bla=qg+m;, (81)
2le = (1 — @) +m3, [Ble=d¢;+mj, [4e= (g2 +p)*+mi, (82)
2lo = (@ +p)?+m3, [Blo= (0 —gq)?+mi, [Ab=q¢i+mi, [lo=(2+p)?+ms  (83)
[2]E = (QI _q2)2+m§a [3]E :q§+m§a [4]15 = (QQ +p)2+miv [5]15 :q§+m§a (84)

Propagators [i]z should not be confused with those appearing in Eq.(117) which refer to a three-point
function. These scalar diagrams were investigated in [1], Eq. (89) and Eqs. (146-147) for S# = S*'; in [2],
Sect. (5.8) for S¢ = S5;2*, Sect. (7.3) for S? = S52*' and Sect. (7.8) for S¥ = S2*'. Furthermore, we define
form factors according to

ST (u|0)=Sipu, SO0p)=5pu, S, v]0) =5, 8u + Si\ Pubvs
SI(IU|V)2811226#V+S1]21p#pva SI(O“Lay):S2I225#V+S2I21p,upva (85)

with I = A, C, D, F; the irreducible classes for two-loop two-point functions are shown in Fig. 3. Generalized

one-loop functions are given in Eqs.(16)-(18): after reduction,(with A\ij = A(—p*,mZ, m?)) we obtain
e d"q 1 4—¢€
A _ P9 _ 11 27 JA(a—1,m), Rea>1 86
olem) = 775 / @rmhe w2l T 2ao ) Ale—bm), Rea>1, (86)

15



B
N\

A
s N S
E s I s

Figure 3: Irreducible classes for two-loop two-point functions.

B2, pomhie) = 5o [Au(2im) = Bulp, () = rz Bo(2, Ly, {m)].
Ba(2.1: po{mhia) = = 1 gy [ ote Ao(2m) + 1 Ay (. mal) +2 217 = nlyaa) Bofp. s, ma)
(AP mE (n = 1) = ng) Bo(2,1: poma )|,
Bu2(2,15 p,{mhi2) = —i m [AO([ml, ma)) + lp12 Ao(2,m1) + 2lp21 Bo(p, {m}12)
+ M2 Bo(2,1; p, {m}lz)} ;
Bi(1,2; p,{m}12) = B.(2,1; —p,{m}21) — Bo(2,1; —p,{m}21), etc. (87)

In this Section it is always understood that the space-time dimension is n = 4 — e. Whenever reducibility is
at hand we apply standard methods and obtain the following list of results:

1
S == [Ao(m2) Bulp, {mbsa) + 7S5, (0, (mhras) +mi S5 (p, {mhizss)]

1 1
Sio = ) m {—p2 Ao ([ma, ma]) By (p, {m}34) +p? mfzg Sg (p, {m}1234)

= P 7, {m1zsa) = [Loas ST (p {mbizss) + S (b {m}ra0)| } (38)

Soon = i m {)\34 Sy (p, {m}1234) — lpas [Sf(p, {m}124) + S:(0, {m}123)} —2p° S (p, {m}124)

+(n—1) {(/\34 —4p*m3) S(p, {m}1234) + (3p* — m3 +m3) S5 (p, {m}124)

— 1p3a S50, {m}123) — 2p” S (p, {m}124)} } ; (89)
S5 = 5 = [Ao(lmr,ma)) Bo(p, {m}as) — mias 55, (mhrs) + 53 (ps {mz)

+ Lot SC(p, {mhiasa) + S0, {mhaa)| (90)

Sias = %m{—/\&ﬁf(p, {m}1234) +1ras [S?(p, {m}124)+5:(0, {m}123)}+p252"(p, {m}124)}7 (91)
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S5 = 5 [~loan SE (o {mbrass) = 520 {mbiae) + 570, {mras)] (92)
St = =5 [Aulma) Bu(2. 15 p.mbas) & S5 dmbrzsss) + i SE o (b)) . (93)
St = 3 TR [Anmsma) Colp, . {mbaan) + iy S7 (0 {mbiasss) = S5 {m o)
— nlp3s SY(p, {m}12343) —n Sy (p, {m}1234)} ; (94)
Soor = i ﬁ {(n 1255 +4p° m3) S7 (p, {m}12313) + 2 (nlpsa — 2p%) S5 (p, {m}1234)
= s S0, {mbrass) + 1 [S5 (b {mbiaa) = S0, fmh)| } (95)
St = 1 Ty [Aomaomal) Bu(2. 1 p. {mboo) = ity S50 {mianss) + 5 (0 o)
+ lypsa SE(p, {mhizsas) + 57 (0, {mhzad) | (96)
S50 = 1 g |~ Ao SE(p, (mhiasss) + 21y SS (0, {mbizss)
222 4 (n_ 1)p2 34 Py ) 12343 p43 Po ) 1234
+ lp3s S50, {m}1233) — S5 (p, {m}124) + ST(0, {m}123)} : (97)
S5y = 2%92 [— lp3a Sg (p, {m}12343) — 57 (p, {m}1234) + 57(0, {m}1233)} , (98)
- — {(”12 +4mip?) 87 (p, {m}i2sas) — nlpi2 S5 (0, {m}13a5)
111 4 (TL— 1)]94 pl2 1 0 ’ p 0 ’

- {417 - n(3p°— m%z)} S¢ (p, {m}ass4) + 2np° [Sf(p, {m}1345) + S7 (p, {m}2354)} } ;o (99)

1 1
St = 3 oy 20 Boles [mhi2) Bo(ps {mhas)
+ (n(p* + p*m3ss — p>mi + miymis) + 2misy p*) S2(p, {m}12345)
— nlpas SE(p, {m}13as) — (20% — nlpas) S (p, {m}2ssa) — nlpi2 SS(p, {m}az12)

- (2p2 - ”lp12) Sy (p, {m}s321) — n [S?(pa {m}az2) + SJ‘ (p, {m}531)}

+ 1 |S(0 {m}az) + S0, {m}sz) | } (100)

1 1
SRR

- {4292 -n(3p° — mis)} S5 (p, {m}ss21) +2np” ST (p, {m}azi2) +2n 57 (p, {m}5321)} , (101)

{(4 m3p® + ”112)45) Sy (0, {m}12345) — nlpsa S (p, {m}az12)
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1 1
She = 1m-1p2 {— A2 55 (p, {m}12345) + lp12 S5’ (s {m}13a5) + lp21 S5 (p, {m}2ss4)
— 292 S2(p, {m}iass) + 20257 (b, {m}aasa)| (102)
§8 = 1 s |20 Bu(p. {m}12) Bup. {m} o)
122_4(n_1)p2 p o\Ps\M 12 o\Ps 1M s45

+ [me mZ, —p® (m3 +mj3 — 2m3 +mj + m3) — pﬂ Sy (ps {m}12345)

+ lpas S5 (p, {m}13a5) + lpsa S5 (p, {m}assa) + lp12 S5 (p, {m}azi2) + lp21 S (p, {m}s321)

+ 520, {m}ase) + 520, Dmbsst) = S20, {mbass) = SH0, {msae)] (103)
S8 = 1 Ty [ S50 () + s S50 (mbane) +1ysa S5 9 {mbsom)

— 29" 87 (p, {m}aanz) — 20° ST (p. {m}saz1)] (104)

5P = 573 [~ e ST (0, (mbazass) + 5 (0, (mbaass) = 55 (o, mbass)]. (105)

57 = 53 [ ot ST (0, (mbazass) + 5 (0, mbass) = 55 (o, mbsn)]. (106)

The standard reduction procedure does not work for the S¢ and S? form factors, since for them the scalar
product p-q; is irreducible. In order to express these form factors in term of other scalar functions, it is then
necessary to employ the procedure outlined in Section 5, i.e. considering first the scalarization with respect
to the sub-loops. Employing Eq.(131) one obtains the following relations

1 1
Sy = 1 T2{AO([ml7m2]) Aqo(ms) = Boy(p, {m}s4) lpsa + Bo(p,0,m4) (p° + mi)}
m3p
= 85 (p, {m}1234) Lpsa ming + S5 (p, {m}12,0,m4) miy (p° +mi) — S; (p, {m}124) M3
+ 510, {m}1z8) mizy — S0, {m}z, 0) mdy | (107)
58 = = — L A(mama) [T Ams) — Bu(p. {(mas) (02 + m) + Bo(p,0,ma) (0 4+ m?)
1_4m§p2 0 1 2 0 3 o\P, 34)\P 4 o\P U,y ) \P 4

- m§ lp34 30(27 15 p, {m}34)} - m§ lp34 m%zs Sf(l% {m}12343)

- [(mfz (p* +m3) + m%} Sy (p, {m}1234)

+ m3y (0% +m3) S (p, {m}12,0,m4) 4+ m3misg S¢ (0, {m}1233)

+ miy [ S0, {mhias) — 70, {m}12.0)] | (108)

8 Strategies for the evaluation of two-loop self-energies

In this Section we provide an explicit example of possible strategies to evaluate diagrams with a non-
trivial spin structure. Consider the diagram in Fig. 4, representing one of the two-loop contributions to the
Z-boson self-energy (the diagram may be needed to assemble the components of a scattering amplitude or to
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Figure 4: Example of a diagram belonging to the S°-family and contributing to the Z self-energy. Dashed lines
represent a H-field.

compute a doubly-contracted WST identity, in which case we have to multiply the corresponding expression
by pupy). In the Re-gauge, with [¢] = (g2 + p)? + &2 M2 the diagram is be written as

3g' M7, S (@ Hpule+py 1 1
S = =3 Hué/d”qd"q s K _
# 8 ¢ ! 2{[5:1] M? [[g:u [gz]}}
1 3 gtat M2 .
x -2 5 (146, + 11 p,py ). 109
(@ +M2)[(q1 — @) + M2] (3 + M2) 8 ciM (s, pupe) (109)

After multiplication by p,p, we can perform all the algebraic manipulations, like rewriting g» - p and g5 in
terms of propagators, or we can use Eq.(85) and the results of Section 7 in order to obtain a fully scalarized
expression. Alternatively, again using Eq.(85), we can write

Hd = Szc;z(l) - 52022(62) + Mg Soc(l)a
I = 85, (1) = 85, (§2) + 257 (1) =257 (§2) + 55 (1) = 57(€2), (110)

where we explicitly indicated the dependence on the gauge parameter £,. To derive an explicit expression
for the form factors we decompose the diagram according to S = Spp + Ssp + Sy, where the subscripts refer
to double and single ultraviolet poles and to the finite ultraviolet part. Note, however, that the splitting is
defined only modulus constants. The three components of the result (with a presentation limited here to
the £ = 1 part) are given in the following list:

1 ——2 1 1
SOC;DP:_E_Q_Auvv Szc;DP:_i‘S’oC;DPv 52021:DP:§SOC;DP7
1 49 1 — 1 1 5 1
Seiop = (G1° + 5 My + 5 MY Ruy = + (350" = § My + 7 M) AL, (111)

Ayy [1 -8 /01 dx x lnx(x)},

N

1
5SS op =200y [/ dx lnx(:ﬁ)—%}, Sy ap =
0

1
"N 1
SQCQI;SP:2AUV L/o dZCCL'Q IHX(CL')—%}’

o

2
222;SP 9 H

5 97 13 — 23 —
AUV—(EPQ+§M§+QM§)AUV+§M§ Inp3; Ay

+Ayy | dCS (25 y,2) {_[33/M31 +3(p*—M? +M§)z—4z2p2} In x(z,y,2)

J } (112)

In x(z,y, 2)

M2 (3y—2
+ M, By + z—1

) [lnx(zy,z’)
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1 LY, ! 3 1

57 = [aos @iy XD o [ o) (L) +2] - 5 - 5602
Y + 0

1 ! 11
SS . :—/dCS(:zr; Y, 2) z%’i’z) N /0 dz z Inx(z) [Ll(x)—l—Z} —I—E-I—ZC(Z),

Inx(z,y, 2) /1 97 1

c _ . 2 2 - -
5’221:F—/dCS(:v,y,z)z B L—i— ; dx z* In x(z) {Ll(x)—i—Q} 516 6((2),

3 In x(x,y, 2
szz:F:/dC'S(:zr;y,z) {Mfl (1—§y)ln(1—:17) <% +)

3
5 [y 4+ (= M2 4 M2) 2= 6272 Inx(,y,2) La(a.y, 2)

5
— = [yM§+(p2—M§+M§)z—z2p2] In x(x,y,2)

2
3 In x(z,y,2) 5 In x(x,y,2) In x(z,vy, 2)
M2 Zu—1)1 2 1— s Y e 2 1— IS _ s Yo
* H(2y ) In’( $)< T + +2 H( y)[ r—1 + €T +]
3 lnx(x,y,z) L2($7y72)‘ lnX(xayuz) Lg(x,y,z)‘ 5
29 _ REYS 2
+ M, Gy 1)[ v 1 + a: +”+36MH1W’L
1, 43, 1 145 , 1 , 9247 251
+ [2479 oa M T SMZ} (@) + g1 P ~ 3 SO My + 5 M+ 555 Mo (113)

Here ((n) denotes the Riemann zeta function. To derive our result we introduced the auxiliary functions

1 1
x(@) =z (1 —z)sp +p2 (1 — )+ pl z, “i:“?’(EJH_x)’

x(w,9,2) = (1 =) [2 (L= 2) s+ (y = 2) + 2 2] + 12 (1= ), (114)
where s, = sign (p?) and p3 = M2/ | p* |, p2 = M2/ | p? |. We define L o,
Li(z) =In(l — 2) — Inx(x), La(z,y,2) =Inx(x,y,2) —In(l —y) —Inz — In(1 — z). (115)

The '4/-distribution is used according to the definitions of Eq.(7).

In conclusion we may say that Eqs.(111)—(113) prove that whenever we can find an algorithm of smooth-
ness for scalar integrals, then the same algorithm can be generalized to handle tensor integrals. The whole
diagram, or even sets of diagrams, can be successively mapped into one multi-dimensional integral. The
only additional complication is represented by those cases where the scalar diagram is ultraviolet convergent
while tensors of the same family diverge; in this case one cannot set ¢ = 0 from the very beginning but,
apart from this caveat, the procedure will be essentially the same.

9 Reduction of tensor two-loop three-point functions

In this Section we move to the complex environment of three-point functions. Two independent external
momenta induce seven scalar products containing ¢; and/or ¢z, and the number of irreducible ones is 7 — I
where I is the number of internal lines in the diagram (note that 4 < I < 6); the choice of the set of
irreducible scalar products has, of course, some arbitrariness. In any case, for two-loop diagrams we never
have complete reducibility with respect to both ¢; and ¢2. Actually, in evaluating observables for physical
processes, we encounter a more general situation: massive SM gauge bosons are unstable particles and final
states are always made up of stable fermions and/or photons. Referring to Fig. 5 we have propagators that
depend on p; and ps + p3, therefore losing full reducibility in the g2 sub-loop. The whole procedure will be
developed on a diagram-by-diagram basis with the double goal of writing explicit integral representations
for all form factors and of deriving a suitable algorithm to express them in terms of ordinary and generalized
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Figure 5: A contribution of the V* family to H — Z*Z — Zff. External momenta flow inwards.

scalar functions. Therefore, for each set of graphs, we will show that all integrals can be expressed in terms of
generalized scalar functions, part of which should be subsequently treated within the context of generalized
recurrence relations [27]; the final answer will contain a limited number of master integrals.

Alternatively, and this represents our preferred solution, all the integrals not belonging to Sy — the class
of ordinary scalar functions in n = 4 — ¢ dimensions — can be evaluated according to the given integral
representation, following the same lines that we have already adopted in IT and in IIT for solving the problem
in the Sy class.

For each diagram there are many equivalent ways to assign loop momenta; we will make a specific choice
for the matrix n of Eq.(2) (the defining parametric representation of the graph) and stick to it also when
diagrams of a given family appear in the result of the reduction of the tensor integrals of other families. In
these cases the necessary permutations of momenta should be performed, as it will be shown in Section 10.

In our presentation the different families are ordered according to the choice made in [5], where the
scalar members were computed explicitly and where the ordering was dictated by a criterion of increasing
complexity in the evaluation and by the fact that three graphs belong to the same class V™', Therefore, in
the following subsections we present and discuss techniques for treating {VZ V! V*} € V¥ and the more
complicated ones, V¢, V¥ and VZ. A complete summary of all results for reduction of three-point functions
is provided in Appendix B.

9.1 The VE-family (a=1,86=2,7=1)

We start our analysis considering the scalar member of the V' ®-family of Fig. 6, which is representable as

U VyZ (p2, P, {m}1234) = N2E / d"q / d"qo ma (116)

with propagators defined by
M= +mi, [2e=(qn—q)?+m3 [Bls=(@+p2)*+mi [Ae=(@+P)>+mj (117)

Note the symmetry property V,*(p2, P, {m}1234) = V7 (P, p2, {m}1243), besides the one shown in Eq.(438) of
Appendix C.

The scalar diagram is overall divergent and so is the («,~) sub-diagram. Vector and tensor integrals for
all classes usually show additional ultraviolet divergences which have been transferred from the momentum
integration to the parametric one. Also for this reason we will keep the n dependence explicit, i.e. n #
4 (e # 0) in all parametrizations. In the following we will discuss vector and rank two tensor integrals for all
families. Rank three tensor are fully analyzed in Section 9.7.

21



-

P1

Figure 6: The irreducible two-loop vertex diagrams V®. External momenta flow inwards. Internal masses are
enumerated according to the parametrization of Eq.(117).

9.1.1 Vector integrals in the V? family

We also consider the VZ vector integrals and introduce the following decomposition in terms of the p;, po
basis:

VE(u |05 p2, P {mbiasa) = > Vi (p2, Pymass) pins
i=1,2

VEO] 5 p2, P {mbiasa) = > Vi2(p2, P, {m}1sa) pipe. (118)
i=1,2

Note that we always use the convention V*(p|0;---) = p* V*(u]0;---).

V® will often appear in the reduction of the form factors belonging to other families and special care
should be applied in writing the correct list of arguments. To help understanding this list we rewrite V.7
according to the following equation:

2e d
/1/ mn mn — J—
e [ it T] D7t = Vi b ) anea) (ha = K+ VE b () ane) s (19)

l=a

where the propagators are now generically written as
Dy=ri+mi, Dy=(r1—r)>+mp, Dc=(ra+ke)’+m, Da=(r2+ks)>+mg  (120)

Here ¢« = 1,2 and myg, ..., mq are generic masses, k. and kg are the external momenta appearing in the
propagators D, and Dy, respectively, and 71, 7o are the loop momenta. Note that the following identities
hold:

V;f(cv d) = _Vif(dJ C) + V;zE(dv C)v V;zE(Cv d) = Vif(dJ C), (121)

where (¢,d) = (ke, ka, {m}abea) etc. Therefore, Eqs.(119)—(120) tell us how to identify the proper list of
arguments when these integrals appear as the result of a reduction of tensor integrals belonging to other
classes and a permutation has been applied in order to conform to the convention of Eq.(120).

As we explained earlier, all these form factors could be computed directly, without having to perform a
reduction. For this reason it is important to list their integral representation. The explicit expression for
the vector form factors of this family is

Vii=-T(e) / DVi Pijiw X, (2,9, 2), (122)

Poop = 1, Pll;E =-—x2, Puyg=-—-1y, P21;E = —z, P22;E =Y, (123)
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with an integration measure defined as follows:

|0y, (124)

/DVE:wE/dOS(x;y,z) {xu—x)

where w is defined in Eq.(15) and where, with our choice for the Feynman parameters, the polynomial x is
given by
X (9, 2) = = F(z,9) + (p5 —mi +m3)y + (2pi2 + liza) 2 + m7, (125)

where we used Eq.(12). All these functions can be manipulated according to the procedure introduced in III
and they will give rise to smooth integral representations.
The generic scalar function in this family is

4 4
vl =3 as - ) = m ()t / d"qy / d"a [0
i=1 i=1

:_&wl’o dCS (x: 2) P (1 — 2)P2 (1 — y)P3 — )PP T (e =~ 126
T 10S v Ay G ), (020)

where [1] = [1], w is defined in Eq.(15), with powers pg =4 — Zj‘:l a; + € and

1 € 1 €
P1=§(—041+042+043+044)—1—57 p2:§(a1—a2+a3+a4)—1—§,

1 €
pp=glmtar—ag—a) =145,  p=az—1,  p=cu—l (127)

Henceforth, for the form factors of Eq.(118) we can write

4
V;f — j : wn”j_4+5 klij Vguij Iaalij7a4lij Q2145 (nlij)7 (128)
=1

with w defined in Eq.(15) and ny;; = Zi:l oyi; — €. The coefficients kj;; and the exponents «y;;, can be
easily read out of the following explicit expressions:

B 201012]2 5 2fyl2102 , 110122 e _ 2 [20121 1122
‘/11——(4} VE y ‘/12——(4} VE +VE 5 ‘/21—_(") VE +VE ’

V;j — 2 [VE2\2,1\1 + VE2\1,2\1 + Vb}\z,l\z n Vb}\u\z}’ (129)

all to be evaluated for n = 6 — e. As usual, there still is the problem of evaluating the integrals of Eq.(129)
by means of recurrence relations or, in other words, to link all of them to MI and to develop an algorithm
to evaluate the master integrals.

Based on our experience with one-loop multi-leg diagrams, we propose an alternative: an algorithm for
the evaluation of tensor integrals offering the same stability characteristics as for scalar integrals. More
precisely, we mean a result which is, from a numerical point of view, of the same degree of stability for
all integrals and where the real nature of any singularity, apparent or not, is independent of the rank of
the integral under consideration. Let us start with V#(u|0), where sub-loop reduction techniques may be
applied giving

m qipu
d =X , 130
[ o g = Xem, (130)
and where X by standard methods is computed to be
1 1 1 m3 1 1
X:—/d" —_—f — 2 131
o= ) ol s loes e 13y
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with [0]z = ¢3. As a consequence of this result we obtain

1
VE(u]0; po, P, {m}1234) = 3 [m%l VIO ps p2, P,{m}12,0,{m}ss) + VZ(0| p; p2, P, {m}1234)
— Cu(p2,p1,0,{m}as) As([ma, m1])|, (132)

so that the ¢, vector integral in the F-family is related to the g, vector integrals of the I — E families.
The function C,, in Eq.(132) is defined in Eq.(20), the I family will be discussed in Section 9.2. For the
VE-family we have partial reducibility, i.e. VZ(0|p1) can be expressed in term of known quantities:

1
VZ(0]p1;p2, P, {m}1234) = —3 (l134 + 2p12)V,% (p2, P, {m}1234) — S (p2, {m}123) + S (P, {m}124)] (133)
Thus we can write
VE(|p1; p2, P,{m}1234) = i Ly;x + p1 - P |:Iy;E - V¥(p2, P, {m}1234)}7 (134)

where two new quantities were introduced,

Lyw= /DVE Z2=Y)X,5 Iyp=— /DVE 1—y (135)
Similarly, we derive
VE(0|p2; p2, P,{m}1234) = p1 - p2 Loy +p2 - P [Iy;E = Vi (p2, P, {m}1234)] (136)
Assuming p? # 0, we can eliminate one of the two unknowns from Eq.(134) obtaining
P Lye = —p1- Pl — V. (p2, P, {m}1234)} +VZ(0[p1; p2, P, {m}1234), (137)

and express V”(0|p2) in terms of standard functions and Iz, which is the integral of Eq.(126) with o =
B =2andy =0 =1, corresponding to n = 6 —e. Hence, one generalized scalar function in shifted space-time
dimension suffices in this class, although we certainly prefer to use V#(0|p2) in n = 4 — e dimensions, for
which we can derive a smooth integral representation.

9.1.2 Rank two tensor integrals in the V'* family

Tensor integrals with two powers of momenta in the numerator can be treated in a similar way. New
ultraviolet divergences arise; for instance with a g1, g2, numerator also the (a, 3) sub-diagram is divergent.
We define a decomposition according to

VE(M? v | 05 -- ) = Vljfl PipPiv + Vljfz P2p P2v +V, 113 {pl p2}HV + V114 6#'/7 (138)

where the list of arguments has been suppressed and where {pk},,, is defined in Eq.(13). Strictly analogous
definitions hold for the ¢i1,,¢2, tensor integrals (V3% form factors) and for the ¢5¢5 ones (V53 form factors).
Consider first the form factors in the 22i series; taking the trace in Eq.(138) gives

n‘/2§4+p1 szjl +2p12‘/2§3+p2 szjz = _(p§+m§)v |:p12V +p§ szj:| +S:(P7 {m}124)' (139)
As a second step we multiply Eq.(138) by p1, and obtain
VE

1
APV A2 Vi = 5 [— (liza + 2p12) V7 + S3H (P, {m}124) + S (P, {m}124)}7

2
1
P2 Vo, + iV, = 3 [— (liza +2p12) V5

Sol (P, {m}124) — S5 (p2, {m}123) + S (P, {m}124) — ;' (p2, {m}123)}- (140)

24



Eqgs.(138)—(140) give a system of three equations for four unknowns; for one of the form factors we can write
a combination of two generalized scalar functions, e.g.

vE 1(02 [ng\l,l\l PRVALE 1\2}

224 2

(141)

3
n=6—e¢

where w is defined in Eq.(15), and solve Eqs.(138)—(140) in terms of the generalized scalar functions. An
alternative procedure is based on the following integral representations:

. 1 .
Vi =— (6)/DVEP221’;EX;€(I,%Z)7 i # 4, ‘G§4:—§F(6—1)/DVEX}; (z,9,2),

2

P221;E =z, P222;E = yz, P223;E =Yz (142)

The three integrals can be computed via their representation, following the general strategy already adopted
for scalar integrals. Similar representations hold for the remaining tensor integrals, for instance we obtain

1 —e
‘/11;4: 2F(€_1)/DVE$X}E (CE,y,Z),

—xz)fld4—e 1 22 .
‘/1?4:— /DVE 2—6 |:§€_1XE+RE:|+§:XE}XE’
P12i;E = IP227;;E7 Plli;E = :E P22i;E for ¢ 7£ 4; Ry = F(z,y) + miv (143)

with F' defined in Eq.(12). Note the singularity hidden in the a-integration in the formulae above. The
q1.92, tensor integrals are easily reduced as the following relation holds:

1
VE(IL | v p27P7 {m}1234) - 5 [mgl VI(O | H,V; p27P7 {m}1270; {m}34) + VE(O | M, V3 anPa {m}1234)

+ Cuw(p2,p1,0,{m}34) Ag([ma, m1])|, (144)

while those with ¢1,¢1, require some additional work. To derive the corresponding result we start with

/ anl DOp iy = B22;E 5,uv + B21;E 92 92v, (145)
(1][2]e

where the sub-loop form factors are

Buwe = g Yo = Xa). B = 5 (Xous = Bus). (146)
and also
S X :/d" [i— mi } (147)
PPN
1 W (65 +2m3, mi, 3 1 m2 1
Yor = [ oS+ it 0 (G ) 0

with [0]z = ¢3. The complete result reads as follows:

E 1 E E
VE(u,v]0; ) = in=1) [VA 0w + VB,,LLI/:|’ (149)

Ve = —miy V] (p2, P, {m}12,0,{m}31) — 2 (m] +m3) V,”(p2, P, {m}1234) — V=(0|p, 115 p2, P, {m}1234)
— Aq(m1) [m3, Colpa,p1,0, {m}sa) + Bol(pr, {m}aa) }

— Ay(ma) {mfg Co(p2,p1,0,{m}34) + Bo(p1, {m}s4)
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E
VB,;,LIJ

=nmiy V(0| p,v; pr1, P, {m}12,0,{m}34,0)
+2 (TL m%l + 2m%) VI(O | V5 P2, P7 {m}127 07 {m}34) + nVE(O | M, V5 P2, P7 {m}1234)
- nAO(ml) |:m%2 C,U.I/(27 15 1 ; P2,P1, 05 {m}34) - C;w(p%pl, 07 {m}34):|

- AO(mQ) [(3TL - 4) Cul/(p27plu 07 {m}34) + nm§1 CHV(27 17 1 s P2,DP1, 07 {m}34)} 3 (150)

which concludes our analysis of the V*-family; note that V7, can be further decomposed following the
standard procedure and also contributes to the d,, part of V*(u,v|0;---). Also for the ¢o,q2, tensor
integrals we can write down a system of equations and solve it, or we can use their explicit representations.
In Eq.(150) we used generalized C-functions; since these functions refer to one-loop diagrams we have full
reducibility of tensors while the scalars can be expressed in terms of standard C;(1, 1, 1) and B,(1, 1) functions
by repeated applications of IBP identities; one should only be aware of the appearance of denominators
vanishing at the anomalous threshold. Once again, we could use their explicit parametric representations
treated with the BT-algorithm.

Results for this family are summarized in Appendix B.1. V,Z = V,!2! is discussed in Sect. 5.1 of III, the
evaluation of the corresponding form factors is addressed in Section 11.1. Note that x,, (Eq.(125)) is defined
in Eq. (62) of III by rescaling by 1/|P?|, a normalization which is better suited for numerical integration and
that we have used for all the y functions of III. The same comment (rescaling x by 1/|P?| in III) applies to
all families of diagrams. The v; of Egs. (62) — (63) of I1I, defined in Eq. (7) of the same paper, coincide with
the v; quantities defined in Eq.(297) of the present paper.

9.2 The V/-family (a«=1,6=3,y=1)

We continue our derivation considering the scalar function in the V’-family of Fig. 7, where only the
(cr,v) sub-diagram is ultraviolet divergent. This function is representable as

1

7 VI(py, P, {m = 26/d" /d" —_— 151
o (p1 {m}i2345) = p q1 a2 1L B[4, 5, (151)
with propagators
[1] = ¢f +mi, 2l = (a1 —g)® +m3,  Bli=a +m3,
[, = (g2 +p1)*>+m3, [5]; = (g2 + P)* +m3. (152)

Note the symmetry property V' (p1, P, {m}12345) = VJ' (P, p1,{m}12354), besides the one of Eq.(438).

~

P1

Figure 7: The irreducible two-loop vertex diagrams V. FExternal momenta flow inwards. Internal masses are
enumerated according to Eq.(152).
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9.2.1 Vector integrals in the V' family

By standard methods we write a decomposition of the vector integrals into form factors

V(|05 p1, P {m}i235) = Z Vii(p1, P, {m}12345) Pips
i=1,2

VIO | ps p1, P,{m}12345) = Z Vi (p1, P, {m}12345) pipe- (153)
i=1,2

As we mentioned earlier, special care must be used when V;; appears in the reduction of other form factors
and one has to bring the integrand in a form adhering to Eq.(151); this can be done using the definition,

MQE

T4

/ dnrl dnr2 Tip H Dl_l = V;i (kd, keu {m}abcde) kdu + V;;(kd, keu {m}abcde) (ke - kd)u ) (154)

l=a

where, with an obvious notation

Da:r%—i_mzu Db:(rl_r2)2+m§7 Dc:r%"i_mga
Dy = (ro + ka)? + m3, D, = (12 + ke)? + m2.
Note that the following identities hold:
‘/tii(d7 e) = ‘/tii(e7d)7 ‘/ié(d7 e) = ‘/tii(e7d) - Vig(evd)v (155)

where (d, e) = (kq, ke, {m}abcde) etc. The explicit expression for the form factors of Eq.(153) is

Vi=-T(1+4e¢) / DV, P;j., X;lfev
POO;I =1, P,,;= ‘TPZi;Iu P21;1 =—z1, Pa,;=—2, (156)

where P,, is the factor corresponding to the scalar integral and, with our choice for the Feynman parameters,
the polynomial y, is

X, (T,Y, 21, 22) = — F(21,22) + lizaz1 + (laas + 2p12) 22 + (m3 — m2)y + m2, (157)

where F' and m?2 are defined in Eq.(12). Finally, the integration measure is

|y, (158)

/DV,:we/dCS(x;y,zl,zz) {xu—x)

with w defined in Eq.(15). All these functions can be manipulated according to the procedure introduced in
ITT with correspondingly smooth integral representations.

This family is the first example of a vertex with full g2 reducibility. Consider the ¢; vector integral: for
the case m3 # 0 and by methods similar to the ones used in Section 9.1 for V* we obtain

1 m? 1 m?
VI(/L | 0; p1, P, {m}12345) = 5 ;g?’ VI(O | W p1, P {m}12345) - 5 —122 VI(O | w; p1, Py {m}127 0, {m}45)
m3 m3
1
- 2m§ AO([mlv mQ]) [Cu (Phpz, {m}345) - CM (pl,pg, 0, {7’17}45)} . (159)

Furthermore, the g2 vector integral can be reduced according to the following relation:

1
VI(0[p1;p1, P, {m}i2345) = 3 {—1134‘/01(1)1, P, {m}12345) — V.7 (p1, P, {m}1245) + V7 (0, P, {m}1235)}7

1
VI(0[p2; p1, P, {m}12345) = 3 {(1154—132)‘/0[(1?1,]3, {m}12345)+ V7 (0, p1, {m}1234) =V, (0, P, {m}1235)}-
(160)
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9.2.2 Rank two tensor integrals in the V' family

All tensor integrals in this class are overall ultraviolet divergent, with a divergent («, ) sub-diagram. Adopt-
ing the same notation employed in the analysis of the V* functions, we introduce the form factors V;},,,
(m=1,...,4):

VI(OLMa Vs ) = V2121 PipPiv + VzIzz P2y D2v + VzIze {p1p2}#1/ + V2124 6#1’7 (161)
where the symmetrized product is given by Eq.(13). Taking the trace of both sides in Eq.(161) gives
Pi Vi + 2p12 Vil + 93 Vioy + Vi, = VP (p1, P {m}1245) = m3 V! (p1, P, {m}12345), (162)

while, multiplying both sides of Eq.(161) by p1,, we have the relations

1
PV 4 P12V + Vihy = 3 {—Vf(ph P, {m}1245) + V5 (0, P, {m}1235) — l134V,, (1, P, {m}12345)},
1
p12Vih, + PV, = B {—Vf(plv P, {m}1245) + V,7(0, P, {m}1235) — l134V} (p1, P, {m}12345)} .(163)

Similarly, contracting Eq.(161) with ps,, it is possible to write additional identities:

P12 Vi, + 3 Vi = — % {Vj(o, P, {m}ass) = V;7(0,p1, {m}1231) + (Ipas —p7) Vi (01, P, {m}12345)]7
1
2
Solving the system formed by Eqs.(162)—(164) it is then possible to express the V.. form factor in terms of

221
functions V! and form factors belonging to the V* family.
The integral representation for the V. functions is the following:

3V, + P2 Vi, + Vi, = {— V2 (0, P {m}1235) — (Lpas — p3) Vi (p1, P, {m}12345)}' (164)

C1—e 1 e
‘/2121:_F(1+€) /D‘/IRQQ'L:IXIl ) ‘/2]24:—51—‘(6) /'DV}XI s
R221;I = Z%7 Ryos = Z%a Ryos,r = 21 22, (165)

showing for instance a double ultraviolet pole for V,},. Similar integral representations can be found for the

form factors V5,:

1
V1121 =T (1 + 6) / DV, Rl2i;[ Xﬁlié, V1124 = —5 T (6) / DVIZEX;ey Rlzi;l = $R22i;1- (166)

I

The 1, g2v Or 1y g2, tensor integrals can be written in terms of form factors V,, employing the following

224
relation, valid for mg # 0:

1 1 1 1
o.3,  m2 (@ - [3]1) ’ (167)

where [0], = ¢2; in this way one obtains

m? m3
Vi (plv s pr, P {m}i2345) = ﬁ VI(Olp, v p1, P,{m}12345) + ﬁ VH(O[p, v pr, P, {m}12,0,{m}4s)
3 3
1
- 2—m§ Ao([m1, ma)) [Cuu(plup% {m}ss5) — Cu(p1,p2,0,{m}as)|. (168)
The integral representation of the V}}, form factors is
‘/1111 =T (1 + 6) / DV, Rlli;[ XI_I_E,
o z(l—x)d—e¢ _ 1
‘/1114:_F(6)/,DV}X1 {_ 2 _ ¢ |: 2 +6X11R1i|+§$2},
Ry = z? Rz, R, = F(Zlu 22) + mi7 (169)
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with F defined in Eq.(12), The form factors V;!, can be reduced using ¢; sub-loop techniques, similarly to

what we did for the V/?, functions, and employing Eq.(167). One obtains
1

VI(M7V|0;"'):m

(Vi b+ Vi ] (170)

1
Vi=— {—Ao(ml) {mug Co(p1,p2, {m}315) +m3; Co(p1,p2,0, {m}45)}

m3
— Ay(ma) [m%m Co(p1, P2, {m}3a5) + mis Co(p1, p2, 0, {m}45)}
—m3 V' (0|, s p1, P, {m}12345) + {milz —2m3 (m] + m%)} Vi (p1, P,{m}12345)

- m%? ‘/OI(plv P7 {m}125 07 {m}45)}7
1
VBI”u.v = m_g {nmg m4112 |:VM(O|/J‘7V7 plupu {m}12707 {m}4570) - VM(0|/1'7V7 plupu {m}1234570)i|

— nm3 A,(m) {CW (p1,p2, {m}aa5) — Cpv (p1,Dp2,0, {m}45)}
— nmiy Ay([m1, ma]) {mg Chv(2,1,15 p1,p2,0,{m}as) — Cpv (p1,p2,0, {m}4s)

+ Cuv (p1, D2, {m}345)} + (3n—4)Ay(m2) |Cuv (p1,p2, {m}aas) — Chw (p1, 02,0, {m}45)}
+m3 (2nmiy, +nmi —4m?) V' (0lu,v; pr, P, {m}12s45)
— m§ [(n —4) ml — 2nm2} VI(0|u,v; p1, P,{m}12,0, {m}45)} ) (171)

Note that V; ,,, will be further decomposed into 0, and py,pj, terms. Results for this family are summarized
in Appendix B.2. VI = V13! is discussed in Sect. 6.1 of III (see comment at the end of Section 9.1.2),
evaluation of form factors in Section 11.2. Note that x,(z, 1,y, z) does not depend on x and, in III, we used

X; (Y, 2) = x,(x,1,y, z). In the following Section we move to the discussion of the V'™ class of diagrams.

9.3 The V¥-family (o« =1,8=4,7=1)

The scalar V* function of Fig. 8 is overall ultraviolet convergent with the («, ) sub-diagram divergent
and is representable as follows:

1
VM P ar dar 172
(ph {m}123456 / q1 / (J2 ]M[4]M[5]M[6]1W7 ( )
with propagators
(1] = ¢} +mi, 2l =(n— @)’ +m3, By =¢ +m3,
[4]x = (g2 +p1) + mi, [5lx = (g2 + P) + mg, [6]y = qg + mg . (173)

Note the symmetry property V™ (p1, P, {m}i23456) = V" (P, p1,{m}123546), as shown in Eq.(438) of Ap-
pendix C. Scalar, vector and rank two tensor integrals have an («,) sub-diagram which is ultraviolet
divergent. As it was pointed out in III, we need to consider just the case msz = mg and, as a consequence,
me drops from the list of arguments; in fact, when these two masses are different it is possible to rewrite the
integral as a difference of V’-functions.

9.3.1 Vector integrals in the V" family

As usual, we introduce form factors for the vector integrals according to the equations

V(1] 05 p1, P {m}rasas) = > Vi (p1, P {m}12345) Pipss
i=1,2
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P1

Figure 8: The irreducible two-loop vertex diagrams V. External momenta flow inwards. Internal masses are
enumerated according to Eq.(173).

VMO | s p1, Py {m}i2345) = Z V¥ (p1, P, {m}12345) Pip, (174)
=12

where the form factors V' (p, k, {m},....) refer to the basis p, and (k — p),.
The integral representation of the form factors introduced in Eq.(174) is obtained employing standard
methods:

VY =T+ [ DV P (175)

Poonr =1, Pli;M = :EPZi;M7 P21;M = —Z1, P22;M = —Z2, (176)
where the integration measure is

|y ()

/ DV, = w© / dCS (z; y,21,22) (y — 21) {3: (1—x)
and w is defined in Eq.(15); Py, is the factor corresponding to the integral representation of the scalar
function. The polynomial x,, is equal to ;.

It is possible to rewrite the ¢; vector integral in terms of the go vector integral; when mgs # 0 one finds
Mg mi
VM (ul0s p1, P {m}i2sas) = 22 V(0|5 pr, Po{m}i23as) + 5—3 V(0] ;5 p1, P,{m}12345)
ms 2ms
Ao ([m1,ma])
2mj

- VI(O | M3 P, P7 {m}127 05 {m}45)] - |:O,u(27 15 1 ; P1,P2, {m}345) mg
+ Cu(p1,p2, {m}3zas) — Cp(p1,p2,0, {m}45)] (178)

The g2 vector integrals can be reduced to a linear combination of scalar factors as follows:

1
VM(Olp1; p1, P, {m}12345) = 3 {— VM (p1, P,{m}12345) li34
— Vi (p1, P, {m}12345) + V' (0, P, {m}12335)} ,
1
VM (Olpz 5 p1, P, {m}12345) = 3 {VOM (p1, P, {m}12345) (li54 — P?)

+ Vi (0,p1, {m}12s34) — Vi (0, P, {m}12335)] : (179)
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9.3.2 Rank two tensor integrals in the V* family

The tensor integrals with two powers of the integration momenta in the numerator can be treated analo-
gously to the case of V!. Only the (a,~) sub-diagram is ultraviolet divergent. Using Eq.(13) we define the
corresponding decomposition as

VHOlp,v 5 --) = Vs Pru P + Vaso P2u P2v + Vo {P102} i + Vil S (180)

and the corresponding form factors V)1 and V2. The symmetrized product is given by Eq.(13). Consider

124°

the form factors of the V,,; family: taking the trace in both sides of Eq.(180) one obtains the relation
PV + 2p12 Vi + 03 Vo, + n Vi = Vi (p1, P, {m}rasas) — m3 Vi (p1, P, {m}12345) - (181)

Similarly, contracting Eq.(180) with p;,, we have

1
PiVh + 1oV, + Vi = 3 {—Vi (p1, P, {m}12345) + V,, (0, P, {m}12335) — 134V, (p1, P, {m}12345)}7 (182)

1
P12V + piV = B {_‘/212(]917 P, {m}12345) + V,5(0, P, {m}12335) — 1134V} (p1, P, {m}12345)}. (183)

Contracting Eq.(180) with ps, we get instead

1
P12V + paVM = B [‘/212(0,1?1, {m}i233a) — VL0, P, {m}12335) + (pT — lpas) V3 (p1, P, {m}12345)},

1
B |:_V212(05 P, {m}12335) + (pT — lpa5) VoY (p1, P, {m}12345)}- (184)

P3Vis + P12V + Vil

Solving the system given by Eqs.(181)—(184), we can reduce the VX form factors to linear combinations of

vector and scalar integrals. The integral representation of these form factors is the following:
ol 1 —1-e
Vi = -T@+0 [ DV R ;™ 024, VA= 3T+ [ DV

2 2
Ropvne = 215 R222;M = Z9, R223;M = Z1 22 (185)

The form factors of the V) family can be written in terms of those of the V). family: in fact we have that

2 2
m312 mia

— VO ; p1, P,
S+ g [V Ol s P )

— V(Olp,v; p1, P, {m}12,0, {m}45)} - w [Cuu(p17p27 {m}sss)

2ms;

V¥(plvs pr, P,{m}12345) = VY (0|, v ; p1, P, {m}12345)

- Cul/(plup2u 07 {m}45) + mg CMU(27 17 1 y P1,D2, {m}345)} . (186)
The integral representation of the same form factors is the following:
o 1 —1-e
VM =—-T(2+e¢) /DVMRHI-.JV,XM2 , 1#£4, Vf;ﬂ:—if(l—ke) /DVMaijl , (187)
with Rz = @ Rasia. Similarly to the case of the V# and V' families, the reduction of g1,¢:1, tensor

integrals leads to expressions which are more involved. Introducing the definitions

1

V¥ (v ]0; "'):m

(VA b+ Vi (188)

31



and employing standard techniques one finds

1
v po {VOM(pla P, {m}12345) m3 [milz —2(m} +m3) m%} —m3 VM(0|u, p; pr, P, {m}12345)
3

_|_

miy [Vi! (b1 Py {mrasss) = Vi (o1, P. {m}iz, 0, {m}as)]
my Ao([ma, ma]) [Colpr, o, {mass) = Colp, p2, 0, {m}as)|

- mg 00(27 17 1 y P1,D2, {m}345) |:m§23 Ao(ml) + m%l?, Ao(m2):| }7

1
Vil = po {(nm%% —4dmim3) VM(0|u,v; pr, P, {m}123a5) + VY (0, v5 p1, P, {m}12,0, {m}s5) nmi,
3
2
+ 3 (2mim3 —nmiymi,;) {VI(OW, v; p1, P, {m}12,0,{m}ss) — V' (0|, v; p1, P, {m}12345)}

2
3
+n (2 % - 1) Ao ([m1, ma]) {Cuu(plapza {m}s45) — Cpw(p1,p2,0, {m}45)]
= Ag(fma,ma]) [y Cuu (21,15 pr.pa, {m}ass) + miy Cpu (2,115 p1.pa, 0. {m}as)|
+ 2 (n—2) Ay(m2) [Cw(pl,pz, {m}345) = Cpw (p1,p2,0,{m}as)
+m3 Cuu(2,1,15 p1, po, {m}345)}- (189)

Note that V37, will be further decomposed into 0, and pypj, terms. The integral representations for the

form factor V,}! are the following:

VM =_T(2+4¢) / DV Rz X306 i # 4,

z(1—x) [4—6

1
-1 2\ —1—¢
- 5 + (1+¢€)x,, RM}—I—gx }X ,

M

vi=-T+o [ ov{-

Rlli;M = 2? Rosiinr,s Ry = F(Zl7 22) + mi7 (190)

with F and m? defined in Eq.(12). Consider now the generalized yerlezas,aslos fupction where the propa-
gator carrying mass m; is raised to the a; power:

. I'2+e) ST
vl (n) - L oSt [0S @ip,, )
Y H?:l I (i)
X (L=y)P (y — 21)” (21 — 22)" 2 (1 — )™ 25° X, °. (191)

The space-time dimension is n = Zle a; — 2 — ¢ and the various powers appearing in Eq.(191) are:
1
p1:a1+a2—§(za—e), p2 =az—1, p3=ay—1,

1 1 1 1
p4:§Za—a1—2—§e, P5=§Za—a2—2—§6, pe = a5 — 1. (192)

w is defined in Eq.(15). Results for this family are summarized in Appendix B.3. V™ = V14! is discussed in
Sects. 8.1-8.2 of IIT (see comment at the end of Section 9.1.2), evaluation of form factors in Section 11.2.

9.4 The VC-family (a=2,=2,7=1)

We continue our analysis considering the scalar function in the V¢-family of Fig. 9 which is ultraviolet
convergent with all its sub-diagrams and is representable as

T Vo (p1,p1, P {m}12345) = 1 / d"q /d"(J2 ] (193)

2l6[3]a[4]le[5]c”
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with propagators

=g +mi, Rle=(a+p)’+m3 [Ble=(n—q)+ms,

4o = (g2 4+p1)°> +mi, [ble = (g2+ P)* +m3. (194)

This family represents the first case where the scalar configuration is ultraviolet finite while tensor integrals
are divergent.

< b2
/
; 4
P — 3
Ve 2
1
\ 4!

Figure 9: The irreducible two-loop vertex diagrams V°. External momenta flow inwards. Internal masses are
enumerated according to Eq.(194).

9.4.1 Vector integrals in the V° family

Decomposition of vector integrals follows in the usual way:

2
V()05 pr,p1, P{m}rasas) = > VS (pr,p1, P {m}rasas) pips
=1

2
VE(O] 5 propr, P{m}rasas) = Y Vi (p1, 1, P {m}2sas) i (195)
i=1

where the form factors V.$(p,p, k, {m}q....) refer to the basis p, and (k — p),. Their explicit expression is

Ve -T (1 + 6) / DVG ‘Pij;c X;l_é,

[ove=u [asation) [ asatiup -] i
P

o0 = 1, P11;G:_1+$1_$2(1_y2)_$2y2Xa P12;G:$2(y1_1)7
P21;G =14y X, P22;G =y —1, (196)

where w is defined in Eq.(15) and X = (1 — z1)/(1 — 23) = 1 — X. The polynomial y,, is given by

Xe = [r2(1—22)] " {— %2 F(Ty2, T2y1) + Talasa i
+ [Tz (M7 —mi —p3 + P?) —T1 (p — p3 + P2)} Y2 + T2 Mf}, (197)
with F' defined in Eq.(12) and
To Ty M2 =Tm? +Tym3 + xom3 + 21Ty p3, (198)
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where T; = 1 —x;, T = 1 —x2. All these functions can be manipulated according to the procedure introduced
in ITI. The generic scalar function in this family is

a1,0s|as,aq|as I'(l+e —3% . aj+e —1—¢
vrelematen ) - - LD oo [as ) [ assuhg'
Hi:1 r (O‘i)
X (z1 — x2)” (1 —21)P (y1 — y2)™* (1 —y1)"* (1 — 22)7° yb° afy, (199)

with w defined in Eq.(15), the dimension n = Ele a; — 1 — € and powers
= -1, i=1,---,4 . > L1+
Pi = ) =1, ) p5_2 « Qs aq Qg 2 €),

1 1 1
p6:a5+a1+a2—§(20¢+1—e), p7:§Za—a1—a2—§(3+e). (200)

Also for this case we have partial reducibility,

1
VE(p1]0; p1,p1, P,{m}i2345) = 3 [— L2 V,E (1, p1, P {m}i2sas) + V7 (p1, P, {m}1345)

- V()E(Oapza {m}2345)} )

1
VE(0|pz2; p1,p1, Py {m}i2345) = 3 {(—1245 —2p12) ViIE(p1, p1, Py {m}12345) — V.7 (—p2, =P, {m}s321)

+ Vi°(0, —pa, {m}4321)] (201)

Note that V,7(0, p) is equivalent to two-point functions of the S family, Eq.(80). The system of equations
that we obtain is

VE(p1]0) =pIV§ +p12 VS, VE(0|p2) = p12 Vi +p3 Vis. (202)

Assuming that p? # 0 we can eliminate the integral with P,, in Eq.(196) in favor of the integral with P,
which contains the factor z2(y; — 1) and obtain the generalized function with o1 = as =1, az = 1,04 = 2,
as = 2 corresponding ton = 6 — ¢, i.e.

VE = VI _ 6 ). (203)

Under the same assumption we eliminate the integral with P,, in favor of the integral with P,, which contains
a factor 1 — y; and obtain a combination of three generalized functions

2 1,2|1,2|1 2,1|1,2|1 1,1]1,2|2
VQC;:—W |:Vc| |+VG‘ ‘+VG| |:|

(204)

n:675'
9.4.2 Rank two tensor integrals in the V¢ family

Tensor integrals become ultraviolet divergent; with ¢;, ¢;, in the numerator the integrals are overall divergent
with (o, ) or (8,7) sub-diagram divergent. With g1, g2, the function is overall divergent (but sub-diagrams
are convergent).

Henceforth we want to analyze the tensor integrals with two powers of go in the numerator: adopting the
usual decomposition in form factors we have that

VG(OLLL, LR ) = V2C2;1 PipP1v + Vzcz;z P2y Dov + V2C2;3 {p1p2}#l’ + ‘/2C2;4 5#1/ ) (205)

with the symmetrized product of Eq.(13). The integral representation for the form factors introduced in
Eq.(205) is given by

e 1 »
‘Gﬁi:_r(1+€)/DVGR22i;GXcl ) Z7£45 ‘/224:_§F(6)/DVGX07

—92 —
Rysio = Y27 Rysso = (1 - y1)2, Roso = (1 - yl) Yo, (206)
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where X = (1—x1)/(1—m2) and Y3 = 1 —y2 X. The reduction of the form factors of the V.S

; family proceeds
as follows: at first we take the trace in both sides of Eq.(205) and obtain

Py Vg +2p12 Vig, + 03 Vig, + n Vg, = —(07 + m3)V,E (p1,p1, P, {m}12345)
—2pt VS (p1,p1, P, {m}12345) — 2p12 V.S (p1, p1, P, {m}12345) + V" (—p2, — P, {m}5321). (207)

Similarly, contracting Eq.(205) with ps,, we get additional relations

1
P2V, +p3 V3, = 3 [(1154 — P?) V.S (p1,p1, P, {m}12345)

+ V5 (=p2, =P, {m}s321) — V.7(0, —p1, {m}a321)
+ VP (=p2, =P, {m}s321) — V,7(0, —p1, {m}4321)},
1
P Voo + 012 Voga + Vi, = 3 [(1154 — P) VS (p1,p1, P, {m}12345)
+ V5 (=p2, =P, {m}s321) + V,7(0, —p1, {m}4321)}- (208)

In Eq.(208), where necessary, the momenta have been permuted to bring the integrand in the standard form
of Eq.(119).
Eqgs.(207)—(208) can be solved for the form factors with ¢ < 4 when we use one generalized scalar function,

1
Vis = 5 VEILIZ (= 6 —¢). (209)

The g1, g2, tensor integral can be expressed in terms of form factors as follows:

VE(ulv s --) = ViS5 p1upiv + Vi35, p2u paw + Vi3, P pav + Vi3 pru b2 + V35, Oy - (210)
VE(ulv 5 ---) is not symmetric in 4 and v, and we have to distinguish between V§, and V,§,. The integral

representation for the form factors of Eq.(210) is:

. 1 e
Ve =-T(1+e / DVg R X, i#4, VS, =- 5T / DV 2 X,
Rm;c = 72 (1 — 21+ 22 72) s R122;G = T2 (1 - yl)z,
Rise=1—y1) (1 =21+ 22Y3), Rise=(1—y1)z2Ys. (211)

Since the ¢; sub-diagram involves three propagators, it is not possible to rewrite V¢(u|v) in terms of
VE(0|u,v). We can, however, express the five form factors of Eq.(210) in terms of scalar function em-
ploying the same technique adopted for the V., form factors. In fact, taking the trace of both sides of
Eq.(210) one obtains the relation

1
p% ‘/ICQ;I + D12 (‘/123 + Vlcz;s) +p§ V1C2;2 =+ n‘/lc2;4 = 5 [mgl V()G(plvplv Pv {m}12345)
+ V0|, g5 p1, p1, P, {m}12345) + V,7(0, p2, {m}2345) + Bo(p1, {m}12) Bo(p2, {m}45)} ; (212)

contracting Eq.(210) with p;,, we have

1
PV +pe Vil + Vs, = 3 [— L2 V5 (p1,p1, P {m}12345)
+ V.5 (p1, P, {m}1345) — V7 (0, pa2, {m}2345)},

1
piVS +p2 Vs, == [— li2 Vo5 (p1,p1, P, {m}12345)

2
+ Vi (p1, P {m}iaas) — V,7(0,pa, {m}2345)}; (213)
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finally, contracting Eq.(210) with ps, we have

1
paVS, +p12 Vs, = 3 [(1145 — P VS (p1,p1, P {m}ia3ss) — VZ(0, —p1, {m}az21)
+ V5 (—p2, =P, {m}s321) — V,7(0, —p1, {m}az21) + V,°(—p2, —P, {m}5321)} ;

1
Ps Vi, + 12V + Vi, = = [(1145 — P2)VS(p1,p1, P, {m}12345)

2
+ V.5 (=p2, =P, {m}s321) + V.7 (—p2, — P, {m}5321)] (214)
Furthermore we have .
V= gwtvett) (215)

The system composed by Eqgs.(212)-(214) gives the form factors with 7 # 4.
It is now necessary to analyze the form factors of the V,§, family, which are defined through the relation

VG(M? V|O y o ) = ‘/;Cl;l P1pP1v + Vvl?z P2p P2v + Vvﬁa {pIPQ}MV + ‘/1?4 6#” ) (216)

with {p1p2} defined in Eq.(13). The integral representation for these form factors can be obtained with
standard techniques:

Vi =-T1+e) / DV, Riiic X;l—e7 i 44,
Rie = (1 — X1+ T2 ?)27 Rise = LL‘% (1 - y1)2 Rua;c = (1 - yl) x2 (1 — X1+ T2 72)7

1 €T
Vo= =500 [ DV 2 (-t magn) (217)

In order to reduce the form factors to linear combination of scalar functions, we start by taking the trace in
both sides of Eq.(216) so that we obtain

PiVS 4+ 2p12 VS, + 03 Vi, +n VS, = —mi VE(p1,p1, P {m}123as) + V,7(0, p2, {m}azss).  (218)

Contracting Eq.(216) with p;,, we have additional relations,

PIVS +pVi, + VS, = % [— Lz Vi§ (p1, pr, P {m}12345)
+ Vi3 (p1, Py {m}1345) + V,7(0, p2, {m}2345)}7
PV, +p2 Vi, = % [— 12 Vi3 (P, p1, Py {m}12345)
+ Vii(p1, P {m}isa5) — V7 (0,p2, {m}2345)}- (219)

It is not possible to obtain more equations by multiplying both sides of Eq.(210) by ps,, since the scalar
product ¢ - ps is irreducible. Eqs.(218)—(219) give the form factors with ¢ # 2 when we introduce one
generalized scalar function,

Ve, = 4wt VI =8 —¢). (220)

There are other equivalent solutions. Results for this family are summarized in Appendix B.4. V¢ = V22
is discussed in Sect. 7.1 of III (see comment at the end of Section 9.1.2), evaluation of form factors in
Section 11.3.
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9.5 The V¥-family (¢ =2,0=3,7=1)

Next we consider the scalar diagram in the V*-family of Fig. 10, which is overall ultraviolet convergent
(with all sub-diagrams convergent) and which is representable as

1

T VE(P,p1, P,{m = 2€/d" /d” , 221
L el R 1 RE R RE R 22
with propagators
N =¢+mi, Rlc=(a+P)°+mi [Bl«=(n—q)”+m3,
[ =g+mi, [Blx=(g2+p1)°+mi, [6]x=(q+P)*+mg. (222)

D2

Z

~

P1

Figure 10: The irreducible two-loop vertex diagrams V. External momenta flow inwards. Internal masses are
enumerated according to Eq.(222).

9.5.1 Vector integrals in the V* family

The form factors for the vector integrals are defined by

2
V(1] 035 Pop1, P {m}iasase) = > Vi¥(P,p1, P, {m}123156) Pin;

i=1
2
V(0| 5 Popr, P {mbiasase) = »_ VoX (Ppr, P, {m}123456) Pin (223)
i=1
where the form factors VX (k,p, k, {m}...r) refer to the basis p, and (k — p),. Their explicit expression is
VE=-T@2+9 [ DV Prn®,

—1—¢€/2 /2
[ove=wr [asatta)) [ asatton [z20-a2)] 0
POO;KZI; Pll;K:_H27 P12;K:_H17 P21;K:}/2) P22;K:}/15 (224)

where w is defined in Eq.(15), and the quantities Y; and H; are given in Eq.(11). The polynomial x,. is given
by

Xu =—F(y2— Xys, 1 — Xys) +lasy1 + (P* —loas) yo — X P> —m2, + m3)ys + mg, (225)
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with F' defined in Eq.(12) and

m2, = — P22} + 21 (P2 + miy) + womi,
T I2(1 — IQ) ’

with X = (1 —21)/(1 — 22). The generalized function in this family is

6 6
viereslenael®im = 3 ey -2 g =t ()t / e | U
i=1 1=1
- ot [asy((a)) [ dsa((u)) (- a0
[T7, T (o)
X (w1 = w2)? 28 (1= x2)P (L= 51)” (y1 — y2)" (Y2 — ¥3)"" ¥5° x> (226)

where [1]x = [1], w is defined in Eq.(15) and the powers p; are

1
pp=az—1, pa=a;—1, p3:§(2a—2a1—2a2—4—6),
1
P4=§(Za—2041—2a2—2043—2—6)7 ps=as—1, ps=as—1,
1
pr =y — 1, p825(6—2a+2a1+2a2+2a3). (227)
There is partial reducibility with respect to ¢; and complete reducibility with respect to g2. We obtain
1
V*(P|0; P, p1, P, {m}123456) = —3 {lpwVDK(P,phP, {m}123456) =V, (p1, P, {m}13456)
+ V' (=p2, =P, {m}23654)} ,
1
V*(0[p1; P,p1, P, {m}123456) =3 [1145‘/()K(P,p1,P, {m}123456) + V" (P, P, p1, {m}12365)
- ‘/()G(Pa Pa 07 {m}12364):| )

1
V(0| P; P, p1, P,{m}123456) = — 5 [lp46V0K(P,p1,P, {m}123456) + V.2 (P, P, p1, {m}12365)

2
= V=P, =P, —ps, {m}21345)] (228)
We can write
VE(P10; P,p1, P,{m}123456) = p1 - PV\ +p2- P [fo - IR;K}, (229)
Ine =T (2+¢) / DVie g (y1 — y2) X;io = w? V2R, — 6 ), (230)

which gives the reduction of the 11-component. Reduction of the 12-component follows from
VE = Vi~ L. (231)

A similar argument holds for the 2i components with the same Iy, although the reduction of the V}*
components can also be obtained solving the system composed by the last two equations of Eq.(228).

9.5.2 Rank two tensor integrals in the V* family

Only the ¢1, g1, tensor integral has an ultraviolet divergent (c,~) sub-diagram.
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Henceforth we consider the go, g2, tensor integral: we introduce the form factors of the V5, family
through the relation
VK(OLU, v ) = ‘/;2(1 PipPiv + ‘/;2(2 DP2p P2v + ‘/;2(3 {pl p2}#’/ + V212(4 6#1’ ) (232)
with the symmetrized product of Eq.(13). Their integral representation is given by
Coe 1 —1-e
Vi = -T2+ 5)/ DV Rysi.x XK2 , 1 #£4, Vi = _EF (1+ 6)/ DV XKl )
R221;K = Yv227 R222;K = }/127 R223;K = Yi Yé (233)

We want to express the V5, form factors as linear combinations of scalar functions. Taking the trace of both

sides of Eq.(232) one obtains
Pi Vo, 4+ 2p12 Vi, + 03 Vo, + 0 Vs, = ViE(P, Popy, {mbiases) — mi V(P p1, P, {m}i23a56).  (234)
Contracting both sides of Eq.(232) with py,, we get
1
P12 Vs, + 03 Vs = B [(1165 — P?) VX (P, p1, P,{m}123456) — Vo5 (P, P,0, {m}12364)

— Vi(=P, =P, —p2,{m}21315) + Vi3 (P, P, 0, {m}12364)
+ VQCQ;(_Pv —P, —p2, {m}21345) — V()G(—Pv =P, —p2, {m}21345)},
Py Vi + 012 Vi + V5, = % [(1165 — P2) V5 (1, p1, P, {m}123156) — V5 (P, P, 0, {m}12364)
— Vi{ (=P, =P, —p2, {m}21345) + V(P P, 0, {m}12364)
Ve (=P, =P, —p2,{m}21315) |- (235)

Once again, one should be particularly careful in shifting the integration momenta in order to bring the
integrand of the V¢ functions in the chosen standard form:

2e

B m m Tiﬂ —

7T4 /d rld T2m = V;?(k,‘b, kb, keu {m}abcde) kbu + ‘/;;;(kbu kb, keu {m}abcde) (ke - kb)u(236)
Dy =172 4+m?2, Dy = (r1 + kp)? + mi, D. = (ro —1r9)%> + m?2,
Dy = (r1 + kp)? +m3, De = (ra + ke)? +m?2.

Contracting both sides of Eq.(232) with p1,, we get
1
P2 Vs, + IV, = 3 {— las V5 (P, p1, Py {m}123456) + V.5 (P, P,0,{m}12364)

Vs (P, P,0,{m}12364) |,
P Vi, + P12 Vo, + Vb, = % {— lias Vi (Pop1, P {m}iazase) — Vo5 (P, Pyp1, {m}12365)

+ V(P P,0,{m}12361) — Vi3 (P, P,0,{m}12364)|- (237)
A solution of Eqs.(234)—-(237) give the form factors in the 22 group. We can now analyze the g1, g2, tensor

integrals. As for the V¢ case, this tensor integral is not symmetric in uv, so that we need to introduce five
form factors:

VE(uly s --) = Vi5, prupiv + Vi, Doy Pav + Viss D1 D2v + Vi P1v P2p + Vi, Oy (238)
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The integral representation of these form factors is the following:
) 1 Cl—e
‘/112(1 =-T (2 + 6) / DVK RIQ'L:K X;Qié, 1 ?é 4, ‘/'112(4 - — 5 r (1 + 6) / DVK o XKl s
R121;K =-Y HQ; R122;K =-Y1 H; y R123;K =-Y H27 R125;K =-Y, H;. (239)

Employing the usual procedure we can reduce the form factors. Contracting Eq.(238) with §,,, p1, and pa,
we obtain

1
PV + o2 (Vi + Vi) + 03 Vi, +n Vs, = — 3 [m%34 Vi (P, p1, P, {m}123456)
— Vi(P, P,p1,{m}12365) — V' (—p2, =P, {m}ases4) — Bo(P,{m}12) Co(p1,p2, {m}456)}7 (240)

1
PIVE +p Vi +VE = 3 [— Lias V5 (P p1, P, {m}123456) + V.S (P, P,0,{m}12364)

VS (P, P,p1,{m}12365) — V.5 (P, P,0, {m}12364)},

1
PV + P Vs, = 3 {— Lias Vi (P, p1, P, {m}123456) + V.S (P, P,0,{m}12364)
K?(Pv Pvpla {m}12365) - Kg(Pv Pv 05 {m}12364)
+ VE(P, P,p1, {m}12365)}, (241)

1
p3VE +paVis +VE = 3 [(1165 — P VE(P,p1, P,{m}123456) + V.5 (P, P,0, {m}12364)
— VS(P,P,0,{m}12364) — V.5 (—P, —P, —p2,{m}21345)
— V°(=P, =P, —po, {m}21345)},

1
paVE +p2VE = 3 [(1165 — P VX(P,p1, P,{m}123456) — V.5 (P, P,0, {m}12364)
— VS (=P, =P, —p2,{m}a1345) + V.5 (P, P,0,{m}12364)
+ V5 (=P,—P, —pa2,{m}21345) — V.C(—P, — P, —p2, {m}21345)|. (242)

The solution of Egs.(240)—(242) gives the form factors in the 12 group.
Finally, we consider the g, ¢1,, tensor integral for which we introduce the form factors V,%;:

Ve (:uv V|O; v ) = V111(1 PipP1v + V111(2 P2p Dov + V111(3 {p1p2}#l’ + ‘/1}1(4 5#1/ ) (243)

where the symmetrized product is given in Eq.(13). Their integral representation is given by

VE =-T(2+e¢) / DVi Ruvire X306 i#4,

2 2
Rlll;K = H2 s R112;K = Hl 5 R113;K = Hl H27

1 x9(l —x
v;z=—5r<1+e>/z>vK[M

K

+ad| e 244
m ] x (244)

H, and H were defined in Eq.(11). Contracting both sides of Eq.(243) first with d,, and then with P,, it
is possible to obtain the following set of three equations:

PV 4+ 2p1a VIS + p3 Vi, + nVE, = —mi V) (P.p1, P, {m}123456) + V' (—p2, — P, {m}23e54), (245)
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1
p1-PVY +p2- PV, + VI, == [— lp12 VIS (P, p1, P,{m}123456) + Vi (p1, P, {m}13456)

2
+ VL (=P, —p2, {m}aseas) + V (=P, —p2, {m}23645)},
1
p1-PVE +p2- PV, +VE = 3 {— lp12 Vs (P p1, P, {m}123456) + V35 (p1, P, {m}13456)
+ Vi (=P, —p2, {m}aseas) + V' (=P, —p2, {m}23645)}' (246)

We have then three equations and four unknown form factors, so that we should look for relations between
form factors and generalized scalar function; for example we have that

(247)

n==8—¢

Vi -2V 4V, = T (2+¢) / DVie a3(y1 — 1)’ x> ¢ = Ve !0

Results for this family are summarized in Appendix B.5. VX = V23! is discussed in Sects. 9.1 - 9.2 of III
(see comment at the end of Section 9.1.2), evaluation of form factors in Section 11.4.

9.6 The VH-family (a =2,0=2,7v=2)
Finally, we consider the non-planar diagram of the V' ¥-family, given in Fig. 11, which is representable as
1
4y H 2e n n
7 V" (=p2, p1, —p2, —p1, {m}123456) = 1 / d"q / d"q2
’ (1)[2]:(3]

#[4]u[5]u(6]x
with propagators

(248)

=g +mi, [2u= (g1 —p2)*+m3, [Blu=(q1—q+p1)°+m3,

~

P1

Figure 11: The irreducible two-loop vertex diagrams V*. External momenta flow inwards. Internal masses are
enumerated according to Eq.(249).

family, including rank-two tensors, are overall ultraviolet convergent with all sub-diagrams convergent.
Adopting the parametrization presented in Sect. 10.2 of III, the integral representation for the scalar
integral of the V¥ family, with arbitrary powers for the propagators, is

6 6
V§17a2‘0‘570¢6|0‘310‘4 (n _ Z a; —2— 6) —— (M2)4_n / dnql dnq2 H [i];ai
i=1 1=1

L TRHD st e [ aene Z
ST T () v [ e [ e

X (1= 21)P 202 (1 — 22)P 25% (1 — 23)7° 25° (1 — )P yP® (1 — )P 2P0 X 27, (250)
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where [1], = [1], where w is defined in Eq.(15) and the powers p; (i = 1,...,10) are
pr=01—1, pr=ax—1, p3=as—-1, ps=a3—1,
1
/)52045—17 p6:o¢6—1, p7:045—|—046—17 pg:5(6—20[4—20&14—20[24—20&34—20&4),

1 1
Py = —5(44—6—2044—20414—2042), P10 =—5 (4+G—Za+20¢3+2a4). (251)

The polynomial y,, is given by x,, = —Q?y? + (M2 — M? + Q%) y + M? where:

2—K2 1— 2_K2
Qu:Klu_KZ,u_KS,ua M2:R§—K§7 Mg:I(Rl 1)_|_(1( ;:)(R2 2)5
X — T

R} =lypz1+mi, R =2 (pi+m3)+ (1—22)(p3+m3i), R3=lisez23+m3,

Ky = —z1p2u, Koy =20p1 — (1 — 22) pap, Kz = —23p1,-

9.6.1 Vector integrals in the V¥ family

The form factors for the vector integrals are defined by the relations

2
V(|05 —p2,p1, —p2, —p1, {m}i23456) = va(—pmpl, —p2, —p1, {m}123456) Pip,
i=1

2
V(0| 3 —p2,p1, —p2, —p1, {m}iasase) = D Vi (—p2, p1, —p2, —p1, {m}123456) Pip- (252)
i=1
Their explicit expression, in terms of integrals over the Feynman parameters, is

Vfl =TI (2 + 6) / DVH Pij;H X;2_€,

[ ovu=w [acsen o [pa-a] ey,
POO;H:17 P11;H:_(Z2_ZS) (1_5[:) (1—3/)7 P12;H:(1_Zl_22) (1_$) (1_3/)7
P21;H =Y (22 - 23); P22;H =Y (1 — 21— 22)7 (253)

where w is defined in Eq.(15) and P,, is the factor that arises in the calculation of the scalar integral. The
form factors for the vector integrals can be reduced as follows: first it is possible to simplify the scalar
products ¢ - p2 and ¢2 - p1, respectively, obtaining the relations

1
VH(P2 |0; —Pb2,P1, —P2, —P1, {m}123456) = 5 {1212 ‘/()H(_p27p17 —DP2, —P1, {m}123456)

V& (p1,p1, —p2, {m}s6134)
+ Vi¥(=P, =P, —ps, {m}34256)}7

V(0| p1; —p2,p1, —P2, =1, {m}123456) = [1156 V' (=p2, p1, —p2, —p1, {m}123456)

1
2
+ V% (p2,p2, —p1, {m}21634)

V& (p2,p2, —p1, {m}12543)} . (254)

Since there are no other reducible scalar products we must find relations that link the form factors of the
vector integrals to a linear combination of generalized scalar functions. The following identities hold:

241|1,1|1,2
VH+ 1,1 ]

V3 (=pa, 1, —p2, —p1, {m}123456) = W [VI}’2'1’1'2’1 B

3
n=6—e¢

Vi (—pa, 1, P2, —p1, {m}123456) = w? [V;’1|1’2I1’2 _ V;ll?,ll?,l} (255)

n=6—e '
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9.6.2 Rank two tensor integrals in the V¥ family

It is then necessary to consider the tensor integrals that have two momenta of integration with free Lorentz
indices. We start from the the V*#(0|u,v) integral and introduce the relevant form factors through the
relation

VI Olp,vs ) = Vos PruP1v + Vago P2u P2v + Vo {P1P2} i + Vi - (256)

The integral representation of these form factors is given by

1
‘/2}2{1 = _F(2+6) / DVy yzRQQ'L:H X;2_67 Z7é47 ‘/21;14 = _§F(1+6) / DVy X;l_e’
R221;H = (22 - 23)27 R222;H = (1 2 22)2 ) R223;H = - (1 2 22) (22 - ZS) . (257)
Multiplying Eq.(256) by d,, and pi,, respectively, we obtain the relations

PV + D3V, + 2012Vt A1V, = Vi€ (P2, 2, —p1, {m}a163a) — m2 V)" (—p2, p1, —p2, —p1, {m}1234s6) ,
1
PV +p VI + V= 3 {1156 Vi (—=p2,p1, —p2, —p1, {m}123456) — V.S (P2, P2, —p1, {m}21634)

— V5 (—p2, —p2,p1, {m}12543) + V.5 (p2, 2, —p1, {m}21634)
+ V5 (=p2, —p2,p1, {m}i2sas) + V£ (P2, p2, —p1, {m}21634) |,

1
PV + Vi, = 3 {1156 Via (—p2,p1, —p2, —p1, {m}123456) + V.S (02, P2, —p1, {m}21634)
+ VS (=p2, —p2, p1, {m}ti2543) — V.5 (P2, P2, —p1, {m}21634)
- sz; —p2=—]927p17{m}12543 - ‘/;?(p27p27_p17{m}21634)

( )
— Vi (=p2, —p2,p1, {m}12543) + Vo5 (D2, 02, —p1, {m}21634)
+ Vzcz;(—p%—P27P17{m}12543)] (258)

We then have a set of three equations that can be solved for i # 4 when we express one of the form factors
in terms of a generalized scalar function; for example we have that

2

H w 1,1]1,1[1,2 1,111,1[2,1 2,1/1,1]1,1 1,2|1,1|1,1
Vi =—1V, +V, +V, + Vi
- H H H H

s=2 (259)

n:6—e-

We can proceed in a completely analogous way for the g1, g1, tensor integral. The relevant form factors are
defined through the relation

VH(N‘? v |0; T ) = ‘/1}1{1 Pip P1v + ‘/1}1{2 P2p P2v + ‘/1}1{3 {pIPQ}HV + ‘/11;14 6#”' (260)

The integral representation of these form factors is given by

VE = T2+ / DV (1— 2)* (1— 9)? R X2, i # 4,

1 —1—¢
VSZ:—iF(l—I—E)/DVHR114;HXH1 )

T
Rlli;H = R22i;H7 R114;H = (1 - I) (1 —x+ 5) . (261)

Contracting Eq.(260) by 0,,, and pa,,, respectively, we obtain the relations

p% ‘/11;11 + pg ‘/11;12 + 212 ‘/11;13 + nvlix = VoG(_Pv =P, —p2, {m}34256)
— mi V' (=p2,p1, —pa, —p1, {m}123456) , (262)
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p3 VI +pa VI + VI = [1212 —p2,P1, —P2, —P1, {m}123as6) — V.S (=P, —P, —p2, {m}34256)

2
+ VS (=P, =P, —pa, {m}aa2s6) + V7 (=P, —P, —p2, {m}34256)
+ V5 (p1,p1, —p2, {m}s6234) — ‘ﬁg(plapl,—]?za{m}56234)},
1
P Vi +p Vi = B [1212 Vi (=p2,p1, —p2, —p1, {m}123456) + V.S (1, p1, —p2, {m}56234)
— VS (p1,p1, —p2, {m}se234) + Vi3 (p1, 01, —D2, {m}s6234)
- Vs (plvplv—pz,{m}56234)}- (263)

Once again, we can rewrite one of the form factors of the V%, family as a linear combination of generalized
scalar functions and solve the system for the others: or instance

1
VE =40t {‘71,1‘3,1‘3,1 Ly b : ‘,1,1|2,2|2,2} 8 or
1
v, . 2 {‘,1,1\1,2\11 ‘,1 J112,1]1,1 ‘,1 A01,11,2 ‘,1 101,1)2, 1} . (264)

The g1, g2, tensor integrals are symmetric in the exchange of u and v; this fact can be understood noticing
that the integral with respect to ¢; is proportional to a; ¢4 +a2 Q*, where a; and ay are scalar factors and Q*
is a linear combination of the external momenta. Therefore, after the ¢ integration, the integrand will split
into a part proportional to ¢b¢5, obviously symmetric with respect to p < v, and into a part proportional
to g5 @Q*; also the latter is symmetric since the vector integral with ¢5 in the numerator is proportional to

Q.

To describe their tensor structure it is necessary to introduce four form factors:

v (N'I/; o ) = ‘/;211 P1p P1v + Vlez P2y P2v +V 123 {pl p2}MV + ‘/124 6MV7 (265)

with {p1p2} given in Eq.(13) and with corresponding integral representations given by
Vi =-T@+0 [ DVy(-a) (1= 9) R 2 121,

1
‘/1}214 = - 5 r (1 + 6) / DVy (1 - fE) Sie ; R12i;H = - R22i;H- (266)

Contracting both sides of Eq.(265) with p1, and ps,, we obtain the following set of four equations:

1
PV e Vi + Vi = {1156 Vi (=p2, p1, —p2, —p1, {m}123456)

2
- V (pz,pz, plv{m}21634) - Vg(—pz,—pz,pl,{m}12543)},

pi Vs, +p12 Vi, = B {1156 —p2, 1, —P2, —P1, {m}123456) + Vi$ (D2, 02, —p1, {m}21634)

+ ‘/1?(—]927—1927]917{m}12543) — V5 (p2,p2, —p1, {m}21634)
— V5 (—=p2, —p2,p1, {m}12543) + V. (p2, p2, —p1, {m}21634)}7
1
Vi + 2 Vil = 3 {1212 Vi (=p2, p1, —p2, —p1, {m}123456) + V.S (p1, 01, —p2, {m}s6234)
+ VE(=P, =P, —pa, {m}aa256) — V5 (p1,P1, —P2; {m}56234)},
1
P Vi +p2 Vi, + Vi, = 3 {1212 Vs (—p2, p1, —p2, —p1, {m}r23456) + V.S (=P, —P, —p2, {m}34256)
+ Voc(—R —P, —po, {m}34256) - Vg(pbpb —Pp2, {m}56234)}-
(267)
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Note that the form factor V.2

7, could be expressed in terms of generalized scalar functions; indeed we have

2
e O R R CE 1 (268)

V112{4: 2

while the remaining ones can be obtained solving the corresponding system of equations. Results for this
family are summarized in Appendix B.6. V. = V222 is discussed in Sect. 10.4 of III (see comment at the
end of Section 9.1.2), evaluation of form factors in Section 11.4.

9.7 Integral representation for tensor integrals of rank three

Our aim in this work was to derive all the ingredients needed for the two-loop renormalization of the
standard model (or of any other renormalizable theory) and to discuss all the tensor integrals that are
relevant for the calculation of physical observables related to processes of the type V(S) — ff. For the
classes of diagrams involving at least one four-point vertex, it is sufficient to analyze tensor integral that
include up to two integration momenta in the numerator. However, for the remaining classes, V", V¥ and
V' it is necessary to consider in addition tensor integrals that include up to three momenta. As specified in
the Introduction, we make use of the following shorthand notation:  =1— 2,7, =1 — z;,7;, = 1 — y;, etc.

9.7.1 V™ family

For general definitions see Section 9.3. We start by considering the integral with three uncontracted g¢a
momenta in the numerator:

VY(0la, B,7; 1) = Vioy {0P1}apy T Vases 19 D2 0y T Vaas {P1P1P2} sy + Vanos {P2P2D1 sy
+ Vios Pla P15 P1y + Vinag P2a P26 P2+ 5 (269)

where we used the definitions of Eq.(13). The various form factors have the following integrals representations
(with integration measure defined in Eq.(177)):

V;:[m =-T (2 + 6) / DV Paosiin X&27€, 1> 2,

_ 2 _ 2 _ 3 _ 3
P2223;M = —Z1 %2, P2224;M = —Z1 %9, P2225;M = —21, Posooins = —Z9,

I'(l+e€ e -
nggum = — % / DV Pasoion XMl , 1=1,2, P2221‘;M = —Z;. (270)

Xu = X, s given in Eq.(157). For the tensor integral with three uncontracted ¢; momenta in the numerator
we use a decomposition identical to the one of Eq.(269). The integral representation for the corresponding
form factors is given by

Vll\l/jh =-T (2 + 6)/ DV]\/IPIIU;M X;fz_ea Pllli;Z\/I = $3 P222i;1\/17 T > 25

I(1+e¢ Ry, I+e _ “1-e
Vzg/fziz_%/DVMQCQ |:P111¢;M+ 211_1 :[+22_6XMlQ111i:M XMl ;=12

Quu;M = fzi[F(Zla 22) + mi]u Riim = (6 - 6) Tzi, Piw = —T 2. (271)

Employing again definitions analogous to those of Eq.(269), the form factors for the V2, family are written
as

‘/vljzwzl =-TI@2+ 5)/ DV Prasiur XA_/,2_67 Piosine = % Pasaina, 1> 2,

I'(l+4+e€ C—e .
Vf:; = _¥/ DVMP122i;NI XMl s P122i;1\/1 = 'rP222i;M 1= 15 2. (272)
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Since the tensor integral V' («, 5|7) is only symmetric with respect to the exchange of the first two indices,
a new decomposition in form factors is introduced:

M(aa ﬁh/; o ) 11121 {5p1}0¢ﬁ’7 + V1122 {5p2}0¢ﬁ’>’ + ‘/1123 {p1p1p2}0¢ﬁ’v +V 1124 {p2p2p1}0¢57
+ Vv1125 Pia P18 P1y + Vv1126 P2a P23 P2y + ‘/'1127 {5pl}aﬁ [~ + ‘/1128 {6p2}0¢5 [~ (273)

where all the symmetrized products were defined in Eq.(13). The integral representation for the form factors
in Eq.(273) is as follows:

Vllrlzl =-T (2 + 6) / DVy P112i;M X&27€; P112i;M = I2 Pzzzi;M; { 7é 15 27 75 87

Vi = — M / DV, x [le;M + B;_eM +2 ;J_rzx;f QM] X, ¢ i=1,2,
Q12 =T 25 [F(zl, 29) ] Risiy = (6—€)Tzi, Piyosny = —2 2,
VM = 21 ) /DVMIJZXA_/Il € B Ry +(1+€) X;}QHMI}, i=1,8,
Quorae = — 21 [F(21,22) + m2],  Quussin = — 22 [F(21, 22) + m7],
Rivory = —(6—€) 21, Riinsr = —(6 —€) 20. (274)

It is straightforward to show that the form factors V}}',, Vi ,, V1%, and V), are generalized integrals of
the type Val\ﬂtz as, 044\0“3

Vi, = =360 VP (=10 — ) — VL, + 3V, — 3V

1116 1113

Vi, = —1200 VPP = 10 — o) - VY, -2V
Vit =126V =10 - + VI, VY = 3600 VP =109 (275)

9.7.2 V¥ family

For general definitions see Section 9.5. We start by considering the tensor integrals V(u,v,«|0;---) and
V(0|w, v, ;- - -) which are obviously totally symmetric and for which we can then adopt the same decompo-
sition in form factors already presented in Eq.(269). Employing the standard procedure, one finds that

Vi =—T(2+¢) / DV Rosoixc X;2_€a i>2,

2 2 3 3
R2223;K - Yl }/2 ’ R2224;K - }/1 }/27 R2225;K = }/2 ’ R2226;K = }/1 ’

F 1+e¢ e .
‘/212(21 = ( D) ) / DVy Ryosiixe XKl , 1=1,2,
Risor = Yo ) R2222;K =" ) (276)
where we recall that the quantities Y7, Y2 (see Eq.(11)) are given by V; = —1 +y; — ys X, with X =

(1 —21)/(1 — 22). The integration measure is defined in Eq.(224). For the V%, form factors we have

1114

‘/1}1(11 = _F(2+6) / DV Rivix X;Qiéa 1> 2,
R1113?K =—H H227 Riisx = _H12 Hy, Risx= _H23, RlllG;K = —Hf’,

I'(l+e e .
V;Ifh = - (T) / DVy xa (Jig Rk — Qllli;K) XKl , =12,

T T
Rllll;K = _H2; R1112;K = _H17 Qllll;K = y_QHQ’ Q1112;K = y_2H1- (277)
3 3
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The quantities H; and Hy were introduced in Eq.(11). Consider now the integral V*(u|v, ); in this case
we have symmetry in the last two indices and a larger number of form factors; with symmetrized products
defined in Eq.(13) we have
VK (,U|Va g ) = V1[2<21 {5p1}1/a | + V1I2(22 {5p2}1/a | + V1I2(2% 5V0tp1# + ‘/112(24 5V0tp2u
+ ‘/1}2(25 Pla PipP1v + ‘/112(25 P2a P2y P2v + V112(27 {pl D1 pQ}aV |
+ ‘/112(28 {p2 pP2P1 }au lpt+ V1}2(29 Plo Piv P2u + V112(210 DPip P2v P2a - (278)

The integral representations of the form factors of Eq.(278) are given by

‘/112(21' =-T (2 + E) / DV Rissiixe XI_<2_6, 1>4,
R1225;K - _}/22 HQ; R1226;K == _}/12 Hla R1227;K = _Yl }/2 H27
Rizose = Y1 Yo Hi, Rissox = _3/22 Hy, Ripiox = _Yf Hy,
V1I2(2¢

R1221;K =1—x — H27 R1222;K =1—-x; — Hla R1223;K = _H2a R1224;K =—-H;. (279)

I'(l+e e .
:_(T)/DVKRIZZi;KXKl , i=1,-4,

The integral V¥ (u, v|a; - - ) is symmetric in the first two indexes; using the definitions of Eq.(13) we obtain

Ve (:ua V|O‘; o ) = ‘/1}1(21{51)1}1141/ | o =+ ‘/1}1(22 {5p2}ul/ | o =+ ‘/1}1(23 5#1/1)104 + ‘/1}1(24 5#1/1)204
+ ‘/;11(25 Pia Pip P1v + ‘/1}1(26 DP2a P2p P2v + Vv1}1(27 {plplp2}m/ |
+ Vs {p2papi Yop ) o + Viteo Pru P1v P2a + Viioio Dia P2 Pau - (280)

The integral representation of the form factors in Eq.(280) is the following:

Vi =-T(2+¢) / DV Riizix X;27€, >4,

R1125:K = Yé H227 R1126:K = Yi H127 R1127;K = Yé Hl H2 s
R1128:K = Yl Hl H2 5 R1129;K = S/IH22 5 R11210;K = Yé H127
I'(l+e

‘/1}1(21- = - T) / DV 2 Rirzix X;l_ea i1=1,2,

R1121:K = - H27 R1122:K = - Hl )
I'(l+e€ 1 C—e .
‘/1}1(21- = - % / DV 22 |:R112'L:K + Y3 ! €2 Q112i;K XKl , =34,
R1123;K =1—-z1—Hs, R1124;K =1-x — Hy, Q1123;K =Y, Q1124;K =Y. (281)

9.7.3 V¥ family
For general definitions see Section 9.6. We finally analyze the rank three tensor integrals in the family

V*#. The tensor integrals V# (u, v, «|0) and V#(0|u, v, «) can be decomposed into form factors in complete
analogy with Eq.(269). We provide here the integral representations for these form factors,

Vi =-T(2+¢) / DV y° Rasie X;27€v 1>2,

Rososn = — (Z2 - 23)2 (1 2 22) ) R1114;H = (22 - 23) (1 2 22)2 ,
Rososn = (22 - 23)3 y Rososwr = — (1 — 21— 22)3 ,
1 C1—e .
Vzgzz':_§r(1+€)/DVH?JR2221’;HXH1 , 1=1,2,
Rooorn = 20 — 23, Rosson = — (1 2 22) , (282)
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where the integration measure is given in Eq.(253). Also

VlIfh- =-T (2 + 5) / DV Es §3 Rllli;H X;Q_Ev Rllli;H = - R222i;H7 T > 25

1 x .
‘/111{11- = — 5 T (1 + 6) / DVy 525 |:ER1111';H + Z Qllli;Hi| X;l_e , 1=1,2,
Rllll;H = Qllll;H =23 — 22, R1112;H = Q1112;H =1—-2 —2. (283)

For the tensor integral V* (u|v, a) we employ another decomposition into form factors, based on the defini-
tions of Eq.(13):

VH(/L|V7 as - ) = ‘/1;{21{51)1}1/01 | + ‘/12{22 {5p2}1/oz | + ‘/12{23 5uap1u + ‘/12{24 51/0¢p2# + ‘/11;25 Pia P1p P1v
+ Visas P2a P2 P2v+ Vi {P1 21 P2} pva +Vitas {P1 P2 P2} (284)

obtaining the following parametrization:

Vi =-T(2+¢) / DV > TY Risoin X;Qiév >4,
Risosn = — (22 - 23)37 Rissen = (1 —Z1 — 22)37
Risorw = (22 - ZS)2 (1 —Z1 — 22)7 Risosn = — (22 - 23) (1 —Z1 — 22)27
1 e .
K§212_5F(1+6)/DVHTRmm;HXHl , 154,

Rigorw = Y (22 - 23)7 Risson = — Yy (1 —Z1 — 22)7
R1223;H =-y (22 - 23)7 R1224;H =y (1 — 21— 22) . (285)

Finally, for the tensor integral V¥ (u, v|a) we adopt the decomposition

VH(:M’ V|a; o ) = ‘/11:21{5171}”1/ | + ‘/1?22 {5p2}ul/ | o + ‘/1?23 5#1’p10¢ + ‘/1?24 5#1’p20¢ + ‘/1?25 Pia Pip P1v
+ Vvllfzs D2a P2u p2u+‘/;lf27 {pl P1 p2}uua+‘/111{28 {pl D2 pQ}HVoz ) (286)

where symmetrized products are defined in Eq.(13). We obtain the corresponding expression for the form
factors:

‘/11:27; =-T (2 + E) / DV, yEQ 52 R112i;H X;27€7 R112i;H = - R122i;H7 >4 s

1
‘/1?21-:—51“(14—6)/DVHTRHMHX;P&, i=1---4,

Riiom = —55(22 - 23) , Risow = Ty (1 2 22) s
Riosnw = (1 - f?) (22 - 23) ) R1124;H = - (1 - f@) (1 —Z1 — 22) . (287)

Note that V*(ulv, ) and also V¥ (u,v|a) require a smaller number of form factors than V*(ulv, ) and
V% (u,v|a). One can check that this is indeed the case by repeating the arguments already used in discussing
VA (o),

We conclude observing that another way of parametrizing rank three tensors is through Eq.(48), after
which the corresponding form factors are obtained with the help of Eq.(51); the two sets of form factors are
easily related but with this parametrization and for a singular Gram matrix the inversion can be done with
its pseudo-inverse, as pointed out in [22].

9.8 Diagrammatic interpretation of the reduction procedure

All the manipulations discussed in the previous Sections, aimed at reducing form factors to combinations
of scalar integrals, have a diagrammatic counterpart. Diagrams with reducible scalar products in the numer-
ator give rise to standard scalar functions of the same family and contractions corresponding to diagrams
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Q@ p1 &

Figure 12: Diagrammatic interpretation of the reduction induced by a reducible scalar product. Here li45 = P2 —
m?2 + m2, while the symbol ® denotes insertion of a scalar product into the numerator of the diagram.

with fewer internal lines, as illustrated in Fig. 12 (there, the symbol ® denotes insertion of a scalar product
into the numerator of the diagram). The figure is based on the simple relation 2 s - p1 = [5]x — [4]x — l145.
After permutation of momenta we obtain the first of Egs. (228) where the form factors are expressed in their
standard form.

There are 7 — I irreducible scalar products for two-loop vertices, neglecting additional branching of the
external lines (as in Fig. 5), I being the number of internal lines in the graph; in the reduction procedure
they give raise to both contractions, i.e. scalar diagrams with less propagators, and to ordinary/generalized
scalar functions of the same family as illustrated in Fig. 13. The component with contractions and ordinary

P22 — NRY
Q-pr ® {E[ Pibs P%h P2) w? %
St %([ . 4([ |

Figure 13: Diagrammatic interpretation of the reduction induced by an irreducible scalar product. In the first diagram
of the RHS non-canonical powers —2 in propagators are explicitly indicated by a circle and the space-time dimension
is 6 — e. Here lp1o = P? — m% + m% and w = ,u2/7r where p is the unit of mass. The symbol ® denotes insertion of a
scalar product into the numerator of the diagram.

scalar functions is given in the second row of Fig. 13 while the irreducible component is expressed through a

generalized scalar function in 6 — e space-time dimension, as depicted in the first row of Fig. 13 (there, a circle
denotes a non-canonical power 2 for the corresponding propagator). Note that the irreducible component
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appears multiplied by the Gram determinant.
Whenever this relation, or similar ones, is used in the reduction procedure, the last diagram on the r.h.s.
of Fig. 13 will be written as in Eq.(228) after a rearrangement of its arguments, see Fig. 14. In principle a

D2

0 (=p2 — P, {m}a3654)

N m»

Figure 14: Rearrangement of arguments bringing the diagram in the L.h.s. to the standard form of the [-family, see
Section 9.2.

generalized scalar function can be cast into the form of a combination of ordinary scalar functions using IBPI
techniques but, in practice, these solutions are poorly known in the fully massive case; it is somehow hard to
accept that part of our present limitations are related to a poor level of technical handling of large systems
of linear equations; however, this really represents the bottleneck of many famous approaches (see [32] for
recent developments).

10 Graphs, form factors and permutations

Diagrams of any renormalizable field theory, like the standard model, must be generated according to
the rules of the theory itself, they must be assembled to construct some physical amplitude and a reduction
must be performed. There are many technical details hidden in this procedure, in particular some efficient
way of handling the different topologies while assembling the grand total of diagrams.

We briefly illustrate our approach: for the sake of clarity we refer to the V' *-family. In principle, for a fixed
choice of the external momenta we should consider three kind of diagrams, as shown in Fig. 15. However,

» P2 » P2 » P2

\pl \pl V\p1

Figure 15: The V®-family. External momenta flow inwards.
in our automatized procedure, we will only compute the first diagram of Fig. 15 since the remaining two are

obtainable through permutation of the external momenta. To illustrate the procedure we consider a specific
example, the process H(—P) +v(p1) +v(p2) — 0; in the standard model there will be diagrams like the one

50



of Fig. 16(a) which can be expressed as a combinations of functions V;” ;(p2, P, M, , M, M, M, ), but also
diagrams like in Fig. 16(b) which are always evaluated according to the conventions of Fig. 16(c). Therefore

» P2 2 D1

Figure 16: A V®-family contribution to H(—P) + v(p1) + v(p2) — 0. External momenta flow inwards.

they correspond to combinations of functions
V;{a--j(pla_p%vaOvava)' (288)
Similarly the decomposition into form factors will be as follows:
VE(IL | 07 P1, —P2, Mwaov vaMw) = - ‘/1?(1)17 —p2, - ) P,u + ‘/IEQ(pla —p2, - ')pl,u.a (289)

etc, showing that the consistent basis to expand the form factors is (— P, p1). After permutation, the results
of our paper follow automatically. For a correct treatment of the combinatorial factors we refer the reader
to Appendix C.

11 Strategies for the evaluation of two-loop vertices

Scalar configurations for irreducible two-loop vertices were considered and evaluated in ITI, where tables of
numerical results were presented. The techniques include several variations of the standard BT-algorithm [17]
and the introduction of parameter-dependent C-functions (for which we refer the reader to Appendix E of
ITI, where they are introduced and their numerical evaluation is discussed in Eqs. (291-294)).

The same set of procedures can be easily generalized to cover a non-trivial theory (i.e. one with spin)
using the defining parametric representations and the reduction formalism derived in this article.

A few relevant examples will be shown and discussed in the following sections. We will place special
emphasis on proving that new ultraviolet poles, not present in scalar configurations, do not prevent the
derivation of representations of the class Eq.(2) for tensor integrals.

The three diagrams (with non-trivial numerators) belonging to the V*'¥*-family, namely V* V' and V™,
are evaluated by repeated applications of the BT algorithm [17]; in this case the procedure remains the
same as for scalar configurations, since the BT-algorithm works independently of the presence of additional
polynomials of Feynman parameters in the numerator. We only have to pay some attention to the limit
€ — 0, which cannot be taken from the very beginning for tensor configurations that are ultraviolet divergent.
The introduction of parameter-dependent C-functions for tensor integrals of the remaining families is also
shown.

11.1 Examples in the V"-family

A typical example is given by the VZ-family where we can easily provide integral representations for the
scalar representative and for the form factors, e.g.
1 . —
VE=—= — A?,V +Ayy [2 / dCy Inx,(z,1,y) — 1

€2

51



1 3 1

+ [ aes gz P [yt (e10) L) = 5 - 5 602),
-y + 2 2
171 - 3 1 _ 1
S =—5 |5 - - s 7 — —
Vo =3 [62 AUV} 16 153 280 {/ dC; (1= y) Iy (e, Ly) + ¢

1
_/dCS(I; Y, 2) [1HXE(x,y,Z)+(1—Z)w )

1-y
+/d02 (1— ) Tnxe (2 1,y) Li(e,y),

1 _
%E=6—2+Aiv—2Auv dCs lan(w,l,y)Jr/dCS(iv;yJ) Inx, (2,9, 2)

| 1
~ [ s wiyn) BEEE) o, (510 Lalo) 1456, (200
VaE = V;f - V;ja VE7E = V;;J’ (291)

where the Lh.s. of the last equation refers to the (p1, P) basis. Furthermore, Ly(z,y) = In(l —y) —Inz —
In(1 —z) —Inx,(z,1,y) and x,, is obtained from Eq.(125) by rescaling by 1/ | P? |.
Smooth integral representations for higher tensors can be classified according to

B |
VP = Kyt a By [ dCoy™ Inx, (. 1y) 4 b, / dCS (z: v, 2) a%yy)
- +

+ / dCc's (‘T; y,Z) H(yaz) IIIXE(.I',y,Z) +ci / dCQ yW 1DXE((E, 173/) LE(‘Tvy)a (292)

and coeflicients and exponents for the first few cases are reported in Tab. 1.

221 | —2A et =LA, —2AZ Bl _dc@2)|2]2|1]2 0 1|2

222 27 e+ LA A2 -1 -1¢(2) 21010 —-1—y|1]O
223 Ay et =LTAZ -3 1((2) 2111 —z |11

Table 1: Parameters for the V* form factors according to Eq.(292).

11.2 Examples in the V' V" families

Consider the V'-family as a second example. All form factors can be expressed as linear combinations
of integrals of the following kind (y, is obtained from Eq.(157) by rescaling by 1/ | P? |):

To.r :/DV, X, IW:/DV, X, Izm;zz/DVf X, T, etc. (293)
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As an illustration we derive the ultraviolet finite part for the first few integrals of the list, introducing

1 1 1-y 1 1 1—y
i = — [ /O ddy /0 dz /0 dzo %, + /O ddy /O dz 13, + / dC Ig;,+12;1] (294)
I

Notation follows closely that of Sect. 6.1 of III (see also Eq. (12) of IIT for the definition of [y, z, u];) and b,
is the BT-factor of the function (see Eq. (64) of III); therefore we have

f{x};y,2) fori=0
f{z}; lyzuli) = f{a}; z,2) fori=1. (205)
f({x}; z,u) for i =2

br= (7 +p3 — p3)” — p3s (L4057 —v3) (V] + 13 — p3) + 135 V5 + Arpi3, (296)

where we have set A\, = A\(1,v{,v3) and where

m2 P
p =10, i=1,...,N, vi=| =, =12, g =1+ i — pl. (297)
| P2 | P
BT co-factors are
Zoy=—Xiy  Zzp=0,  Ziyy=(1—vi—v3) (] - pds) +2 (0 + 43— pi)va
Zyr=—(1- V12 - V22) (Vl2 + Hg - /Li) -2 (Vl2 - Uis) V127 Ziy = Zip — Ziv1,1- (298)
We define additional auxiliary functions:
51 (‘T7y7 21, Z?) = XI(:I;7 1- Y, 21, 22)7
Li(2,y, 21, 22) = (1 — ) — In(2) — In(1 — @) — In &, (&, 21, 22). (299)

Our results are as follows:

I4. _ _lngl (‘T?ya 21, 22) ‘
0;1 y I

1
IS’;I =1|1— L,;(z,0,1— y,z)] In & (2,0,1—y,2)+ 3 Ing, (z,y,[1—y,20])

)

2
1 — lng (‘Tuya [1_3/7270]1')
+ - Z;, L ,
2 ; y +
- 0 1 1
I5., = 3 Zi, &, (2,0,[1 —y,2,0];) L (x,0,[1 -y, 2,0]), 10;12—151(1)4—5,

i=0

i i , 1 1
Ilz;IZ'IIO;]v (7’¢0)5 I]?m,jz_gsl(2)+§a I]fly;IZ_lng[(xvyazlsz)a

2
1 _ 1
Ify;] = 5 Z Zi;] 1D€I(I,y, [1 - y,z,()]l) + gy lngl(xvya [1 - yvzvo]())a
i=0
1 In¢, (x,y, 21, 2
B, =1, =0, L., =-1 I, = 5 (Zy — 321) W R

1 1
Ile;l = 5 (Zl _32) LI(.’II,O,l _yuz) lngj(x7071 _yuz) + 5 (Zl _y) lngj(x7y7 [1 _yazao]O)

1 1 1-—- 0 1 1-—- 0
g (0,1 —y,2) 4 4 75, @05 00) e ]

zZ
+_Zl;1

2 Y + 2
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+ z Z;I lné-[(x?yu [1 - yuzuo]Q) ,
2" Yy +
1 __
Ilzzl;l = 5 0;1 LI(Iaov [17 1- yvO]O) hlgz (117,0, [17 1- yvo]o)
1-— _
+ 57 D Zi, Ly, 0, 1,1 = y,0]) Ing, (2,0, [1,1 =y, 0],
i=1,2
1 5 1 In&, (z,y, 21, 22)
0 4 s Y )
Ilzl;I:_Esl(l)—i_%? IIZQ;125(22_3Z2)1+‘+7
1
1 Z1 — hlg (xvya [1 _y,Z,O]i)
If’zw:§(Z2—32)L1(x,0,1—y,z) Ing, (z,0,1 —y,2)+ ) ;Zw I ” .
+ g 1n§1(£7y7 [1 _yaZaO]O) + 2z lné-[(xaoul _yuz)u
-y < 1 5
Il2Z2;I = T Z ZiTI L(2,0,[1,1—y,0];) In§, (,0,[1,1 —y,0), I]?ZQ;I == 12 Si(1) + 79’ (300)
1=0

where S, (k) = Zle [7". Similar expressions can be written also for higher order form factors showing,
once more, that scalar and tensor integrals give similar results and can be treated in one single stroke.
Once again the whole procedure can be described in terms of a specific example. Consider the diagram of
Fig. 17 which contributes to the on-shell decay amplitude Z — [*1~. The on-shell vertex, including external
wave-functions, is decomposed according to Eq.(35) and the corresponding coefficients are subsequently
evaluated; for instance we consider the contribution coming from the diagrams of Fig. 17 and derive the
vector coefficient in the limit m; = 0. Using Eq.(38) and taking the trace we obtain the following expression

Figure 17: Diagram of the V’-family contributing to Z — T1™.

i7T4 552

%@9 Mi ‘/()I (plapaMzaMwaMwaova) + M‘?V ‘/111 (plvvavavavaaMw)
+ (MX?V +M§)‘/112 (pl’P’MZ’MW’MW’O7MW) + AU([MW?Mz])CO(p17p27vaOaMw)
- VI)E (pluvavawvova) + V;)E (OvPszvavava)

+2VE(0,P,M,, M, M, M,) — V& (pl,P,MZ,MW,o,MW)] (301)

I, =

The form factors of the V®-family in Eq.(301) can be further reduced according to the results of Section 9.1
or, more conveniently, they can be computed according to Eqs.(118)—(123). A similar situation appears for
the form factors of Eq.(301) of the V!-family for which we use the reduction techniques of Section 9.2 or an
explicit evaluation using Egs.(293)—(300).

Results in the V¥-family are very similar in their structure and will not be reported here. Furthermore,
the graph corresponds to a one-loop self-energy insertion which should be Dyson—re-summed.
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11.3 Examples in the V%-family

Coming back to the strategy to evaluate tensor integrals, we observe that two other scalar diagrams, V¢
and V¥ were expressed in III in terms of integrals of C-functions (Appendix E of III).

It is very easy to extend the derivation to tensors. Consider, for instance, the V¢ case: starting from
Eq.(202) the appropriate strategy will be as follows. If we need to prove a WST identity, where the presence
of Gram determinants is inessential, we simply invert the system and derive V¢ with 4,5 = 1,2 in terms of
known quantities. If instead we need to use these form factors to compute some physical observable, then
a possible strategy is the following: suppose that p? # 0, then V,$ is eliminated and V,$ is either given in
terms of V111212 at n = 6 — € or explicitly evaluated.

If we choose the second strategy then x, is a quadratic form in y;, y2, with 2-dependent coeflicients and
we can use the results of Appendix E of III to write

V=g [ dS:(ahe [Cu0) - G0, (302)

with |P?| = M?2. Similarly, if p; - p2 # 0 we can eliminate V,$ and express V,$ in terms of generalized scalars
as in Eq.(204), or explicitly derive

Vi = / ass({x}) [014(0) — G, (0)]. (303)

For this family the rank two tensor integrals are ultraviolet divergent. For the form factors of the 22i-family
defined in Eq.(205) the relevant quantity is Vg, = V'L evaluated at n = 6 — e which, with x,, obtained
from Eq.(197) by rescaling by 1/ | P? |, can be rewritten according to

—1—¢

Vi =5 (5) T [ asatabfea -2 [ asalubs® e (304)

Eq.(304) shows the expected ultraviolet poles; indeed the integral is overall ultraviolet divergent and so is
the (8,7) sub-diagram. With w defined in Eq.(15) and x, ., = X, (22 = 0) we obtain

1 _ . 1 .
Vi =y [ dSaloree) [ dSalonue) (1= 2 TV 45 [ dOS (ors i) VP 4K,
. In . — 1 1
‘/2244:1DXG;0+ o +’ Vzcz;igz_lnXG:O (AUV—IH$1+§lnyz—glnxclo)v
1/1 2 3 — 7 1
Kol(Aem)-im, . T Loy
I A - 13C) (30%)

where, as usual, Ay, = 1/e — Ayy and Ay = v — Inw/M?, with M2 =| P? |. Similarly V,$, will develop
a double ultraviolet pole being overall divergent with («,~y) divergent. In this case the additional pole is
hidden in the ys-integration, as shown in Eq.(217).

11.4 Examples in the V¥ V¥-families

Also the V¥-family can be expressed in terms of well-behaved integrals of C-functions, introduced in
Appendix E of III. From Eq.(230) we see that one of the relevant objects to be evaluatet is I, = yLAL212
for n = 6 — e: the important result is that this quantity can be computed along the same lines of the
corresponding scalar integral.

The derivation is straightforward: starting from Eq.(224) we will adopt the same technique as in Sect. 9.1
of IIT; with X = (1 —x1)/(1 — 22) = 1 — X we change variables according to y; = v} + X y3,y2 = v4 + X y3
and y3 = y5. Next we perform the y3 integration analytically; after that the y; — yo interval is mapped into
the standard triangle 0 < yo < y1 < 1 and the net result is a combination of 10 integrals of C functions with
{z} dependent parameters, as defined in Tab. 2 of III. Therefore, we obtain expressions for both standard
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and generalized scalar as

1 T2

_W/dS2(I1,I2)W
x [ff Co([l = 2]) — 1 T2 Co([3 — 4]) — 71 T2 Co (5 — 6]) — T2 Oy ([7 —

V<=

)+ T2 7 Cal(9 - 10]],

IR;K = —% / dSQ(,Tl,CEQ) A(%%ZEQ)
-
A= [Ca =2~ Ot —2)] =717 [Cu (5~ 6)) + Cral(3 — 4)
5
+ 7 |Ou([3—4) + Cua((5 —6])} = Gl —8) — ([T - 8))
T Gyl — 10 + 71 Cull9 — 10) ~ L0 (f9 — 101}, (306)
where C,([i — j]) = Cn(i) — Cr(j) and where T; = 1 — 2;, T = 21 — 2. Furthermore we have
Awr,x2) = v — w2 (1= @) pf + 2 (1= x1) (1 — g + sp),
Vﬁ——spxl +xy (=sp + pf — pid) + w2 (4 — p3) + 13, (307)

where, according to ITI, we introduced P? = — s, M?, 7 =m7/ | P? | and v} =| p3/P? |.

In this family we can show another example of ultrawolet divergent form factor in a situation where the
corresponding scalar integral is convergent. Consider V%, defined in Eq.(244). Since the ¢; sub-loop diverges
we expect a simple pole at ¢ = 0. Let us define

=& ({2} {y}) (308)

where x,. is obtained from Eq.(225) by rescaling by 1/ | P? |; £, is a quadratic form in y;, yo, linear in ys,
with z-dependent coefficients. The procedure of extracting the ultraviolet pole (a subtraction, as introduced
in III), followed by a mapping of the yi,ys integration regions into the standard triangle 0 < yo < 31 < 1,
will introduce several new quadratic forms which will be enumerated as follows:

§Q—y1,1 =92 E1— Xy, 1 - Xy) =&,

x2 (1 — x2) Xy (T1, 22,91 + X Y3, y2 + X Y3, Y3) =& (Y1592, 93),

E1— Xy, 1 -y

Xy, Xy2) =

E1 —yo,1 = Xy1) =

01— Xy, Xy
E1—Xysye, 1=

1 —y1, Xyays) =
E1—Xysy1, X ysya) =
EQ1—Xysy1,1— Xyszyz,y3) =

— — — — — — — ~— Y ' — — —
L/‘Pr
—_
w

§(1— X ysy1, X ys y2,y3) = o,
§1 —yayz X, 1 —y1,y3) = &1,
E(1 =y, y1y3 X, y3) = Eas,

(1 —y2, 1 —y1) = &as,

where &, (y1,y2) =
C-class:

/ dSa(y1,y2) & = CO1) —
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565(1) +0 (62) )

E1 =y, 1= Xy) =&,
§1—Xy2,1—y1) =&,
(1= Xysyr,1 — Xyszya) = &,
E(1 = Xysy1,1 —y2) = &o,
(X y3y2, X ysy1) = &12,
(1= Xysy2, Xysy1) = 14,
{(1—y2,Xy3y1) &16,
§1—Xyzy1, 1 —y2,u3) = &1s,
(1 —y1, X ysy2,y3) = 20,
(
(
(

Iy

EQl—yoys X, y1ys X, y3) = &oo,
E(y2ys X, y1ys X, y3) = o,

(1 —ys2,1 (309)

y17y3) = 5267

& (Y1, y2,0). We introduce new functions corresponding to well-defined integrals of the

chy(l) = / dSy(y,ye) & Iy (310)



All of them can be evaluated with the same algorithm described in Appendix E of III. Collecting all the
ingredients we obtain

1/ wN\eD(1+e 1 !
V=3 (o) e [ dsated) e [Vt + Vit + [ daViL). G
73 72
Vi =271 [C)(3) +C2(6)| — 222 €0(2) + 2 - €0(5). (312)
TT —
Vg = == [CL(9) = CL(0)] +71 {[03) +€0(6) s (1 —2)
=2
~C33) = €(6) +CL(3) +CLa(6) ] — 2 [€(2) Inwa (1 — ) ~€}(2) +CL(2)|

T g—j {62(5) Inzs (1—a2) —Co(5) + 652(5)}7

Vs = —Ys®2 g [03(18) + 68(21)} — Y3 X2 _i {08(20) =+ 08(23)}
) 1)

TT

s T2 1) +€015) - €019) - €2o2)] — s T [e2(8) — 217

jnded
T2
2 . TT1 [0 0 o T s T
+ yian 5t [C2019) + €0 (22)] + p w2 T CO(1T) + y w2 S5 CO(24)
L2 T3 T3
+ 22CY(26) + T [03(10) +C0(11) — CO(18) —68(21)} - % [03(25) —68(26)}
3

+7 [03(13) +C0(16) — C°(20) — 63(23)] T [63(12) - 03(24)} . (313)
T2

Note that in V114, 5;x the C-functions have parameters which depend on 1, z2 and also on ys3.

The V¥ -family is characterized by having ultraviolet finite components up to rank four tensors. Therefore,
the techniques introduced in Sect. 10 of IIT can be transferred in an integral manner to all relevant form
factors discussed in this article.

12 Conclusions

Any realistic calculation of physical observables in the framework of quantum field theory is remarkably
more demanding than simply having at our disposal techniques to evaluate few special scalar diagrams.
There are of course different strategies to compute complex diagrams but, to a large extent, they all amount
to reducing a large number of integrals to some minimal set of master (irreducible) integrals.

As a starting procedure, one always saturates the Lorentz indices in the Green functions so that the
numerator of the Feynman integrals contains powers of scalar products. The novelty in the analysis of two-
loop vertices consists in the presence of so-called irreducible scalar products, namely, configurations in which
the available propagators are not sufficient to algebraically simplify the numerator. Note that irreducible
scalar products already occur in two-loop self-energies; there, however, the technique of reduction in sub-
loops [7] alleviates their irreducibility (see our presentation in Section 5).

We showed that tensor integrals can be first of all decomposed into a combination of form factors, many
of which can be reduced to scalar integrals (either of the same family or of families with a smaller number
of propagators), while few irreducible integrals remain. It is then possible to relate these latter ones to
generalized scalar integrals of the same family, i.e. integrals in shifted space-time dimensions and with non-
canonical powers of the propagators. The number of these generalized scalar integrals can be further reduced
using generalized recurrence relation techniques introduced by Tarasov in [27].

Alternatively, we developed our favorite strategy: following the findings of our work on one-loop multi-leg
diagrams, we sought for a procedure where all integrals occurring in a realistic calculation can be written
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in a form analogous to Eq.(2). The practicality of this approach was strengthened in Section 11 by the
explicit treatment of several form factors, paying particular attention to those cases where new or additional
ultraviolet poles arise. In a line, we assembled the bases for extending a diagram generator to an evaluator
of physical observables.

In our opinion, the optimal algorithm puts tensor integrals on the same footing as scalar ones and
should not, therefore, introduce any multiplication of the tensor integrals by negative powers of Gram
determinants. The numerical quality of tensor integrals should also not be worsened, as a consequence of
the adopted reduction algorithm, by expressing them as linear combinations of master integrals; in this case,
the kinematic coefficients have zeros corresponding to real singularities of the diagram, but their behavior
around the singularity is always badly overestimated.

These shortcomings are not severe in the (almost) massless world of QED/QCD, but they turn into serious
disadvantages in the massive world of the full-fledged Standard Model (SM). We found it more convenient
to interpret irreducible configurations as integrals in the canonical 4 — e dimensions with polynomials of
Feynman parameters in the numerator; they can be computed — numerically — as well as the scalar ones.
Several explicit examples were presented in Section 11.

Once we have reduced all obviously-reducible structures, we may as well compute all remaining quantities
numerically. We must of course avoid situations where cancellations are expected: this may happen when
the final result contains a very large number of terms, when apparent singularities are present (see Sect.
D of III for a discussion) or when inherent gauge cancellations do not support a blind application of the
procedure. We do not expect our approach to suffer from problems more severe than those encountered
in other methods, but this remains to be fully tested in explicit two-loop applications. Comfortingly, our
findings in numerical one-loop analysis (but also independent work [33]) support this claim.

In conclusion, we collected in one single place all the formulae needed to reduce fully massive tensor
integrals, diagram-by-diagram up to three-point functions, to generalized scalar integrals. One may then
choose how to proceed; for instance, using explicit integral representations for these functions and evaluating
them with the same algorithms of smoothness (or with some of their generalizations) introduced in [5] for
ordinary scalar functions.

Although we believe that there is no substitute for writing linearly, and that any article should be read
linearly as well, we inserted several Appendices to be consulted as a reference.

The collection of results of this article contains all the ingredients needed to renormalize the SM (or any
other renormalizable field theory) at the two-loop level, and to calculate the two-loop gauge boson complex
poles as well as physical observables related to processes of the type V(S) — ff, the decay of vector or scalar
particles into fermion—anti-fermion pairs. The use of projector techniques [20], augmented by the explicit
reduction formulae that we collected, with the supplement of suitable integral representations for irreducible
components, are the main tools to carry out the program.
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A Reduction for generalized one-loop functions

Generalized one-loop functions can be treated according to the BT-algorithm discussed in [3]. For
B,(a, 8; p,m1, ma) one may use the results of Sect. 3 of [3], in particular Eqgs. (23-24).

For the C-family there is full reducibility and, moreover, different scalar integrals can be related among
each other and expressed in terms of standard scalar functions. The most convenient approach is based on
the fact that all C-functions can be evaluated according to the BT-algorithm. We illustrate the procedure for
functions of weight 4, where the weight is defined to be the sum of the (positive) powers in the propagators;
all C functions can be written as

Clw = 4] = / dSs P(xl,xg)V_2_€/2(x1,x2), P(x1,x2) Z Z A T7 T (314)
n=0 m=0

where w = a1 + as + a3 and where the polynomial P depends on the specific case under consideration. For

standard (w = 3) form factors (from C), to C,,) the corresponding polynomials are given in Eq. (41) of [3].

For scalar functions of weight 4 the P are 1 — 23 for Cy(2,1,1), 21 — 25 for Cy(1,2,1) and a2 for C,(1,1,2).
Higher weights can be evaluated recursively, e.g.

=2 Z 2inem Crm 10 = 4,

n=0 m=0

Com|w = 4] = / dSy V712 (2, ) [nXl x’f‘l xh' +mXoal xl' Yy(e—n—m)ahal
+ / dCy [(1 — X))V (1) + (X — Xo) VT VT (g 1)
+ O X2 V1 2(a1,0)] (315)
where, with the definition of Eq.(19), the quadratic form V is
V(zy,ze) =2'Gx+2K' 'z + L, Gij = —pi - pjs L =mji,

1 1
Ky =5 (pi+m3—mi), K= (P?—pi+mj—mj), (316)

2 ( 2
with P = p; + po. Furthermore, B3 =L — K*G"' K and X = — G~! K. For w = 3 we finally have

1 1
Com|w=3]=0C°, — 5 / dc, C}l - — 5 / dSy xytay e |, (317)

where the coefficients are

Con = .
me (24 n+m)(1+m)’

C}nn = (X1 — Xo) x?+m In V(21,21) 4+ Om,0 Xo 2] In V(21,0) + (1 — X7) 2" In V(1,21),

C2.=mXox; — (2+n+m)zyze +n Xy 22) In V(wg,xa). (318)

D-family functions of weight 5 can be reduced recursively with three iterations of the BT-algorithm; see
Sect. (6.2) of [3] for a discussion, in particular Egs. (140-142). These functions are not needed in this paper.

B Summary of the results for the reduction of three-point functions

In this Section we present a summary of the results obtained for the reduction of two-loop three-point
functions and derived in Sections 9.1-9.6. Tensor integrals are defined by having powers of momenta in the
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numerator; they are further decomposed into form factors ® tensor structures and, for completeness, the
full collection of results is presented for the form factors as well as for tensor integrals with saturated indices;
the latter are perhaps the most important objects when one computes physical amplitudes in the framework
of the projector techniques introduced in Section 4.

The presentation is organized through a series of concatenated formulae that can be easily coded with any
of the well-known packages for symbolic manipulation; the formulae below can thus be used as they stand or
they can be used recursively. Each object of the list contains scalar functions or form factors corresponding
to tensors of lower rank and with fewer propagators that can be found earlier in the list and, if needed, the
procedure can be iterated until the chain of reductions stops with a fully scalarized expression.

Formulae for ordinary scalar vertex functions can be found in IIT where, however, the alphameric con-
vention was not yet used and therefore the correspondence is based on Eq.(25). In particular, V,? = V12!
in Sect. 5.1, V) = V;!3! in Sect. 6.1, V,¢ = V*2! in Sect. 7.1, V¥ = V' in Sects. 8.1 — 8.2, VX = V2?31 in
Sects. 9.1 — 9.2 and V.7 = V,222 in Sect. 10.4 of III. Additional material, with the extension to generalized
scalar functions, is presented in this paper in Sects. 11.1 — 11.4. Finally, reduction of one-loop generalized
form factors has been discussed in Appendix A.

Additional notation, relevant for this Appendix, was given in the Introduction but is repeated here: we
denote by G the Gram matrix arising in the context of a vertex function and use

Gij =pi-pj, D=detG=pip;— (p1-p2)?, Di=pip3, Ds=pi2p3, Ds=piapi. (319)

Before presenting the list of results we would like to discuss one specific example. Consider a rank two tensor,
e.g. from Section 9.5, where all indices are saturated with external momenta:

1
VEQO|p1,p) = 3 {—1145 {V;fpf + V;«:plz} —VS(P, P,p1,{m}12365) P

+ 1+ P [ViS(P, P.0, {m}rsss) = VS (P, P.0, {m}rsea)| }- (320)

After the first step in the reduction there is no Gram determinant but the latter may still be hidden in
form factors corresponding to tensors of lower rank. As a matter of fact, we may iterate the procedure and
consider

VY pl 4+ Vi pra = VE(0| p1),
p1- P Vi (P, P,0,{m}12364) — V,5 (P, P,0,{m}12364)| = V(0 |p1; P, P,0,{m}12364),
Vi (P, P, py, {m}12365)- (321)

A reduction, which is again free from Gram determinants, can be applied to the first term in Eq.(321); how-
ever, further scalarization for the last two can only be performed if Gram determinants do not pose a problem,
as in proving WST identities; otherwise the reduction chain for these terms should stop and their evaluation
will follow according to the corresponding defining representation (note that V(0| P; P, P,0,{m}12364) is
instead fully reducible). Alternatively, the term can be further reduced with generalized recurrence relations
which, however, introduce additional kinematic coefficients, with the appearance of (physical) singularities
ete, etc.

In summarizing the whole set of results we adopt the following convention: the list of arguments of tensor
integrals in a given class is suppressed when we present their reduction; therefore

VJE = VJE(an Pa {m}1234)7 VJI = Vf(pl; Pa {m}12345)5
VM = VM(p1, P, {m}12345), Ve =VE(p1,p1, P, {m}12345),
VE =VX(P,p1, P,{m}123456), VI =V (=p2,p1, —p2, —p1, {m}123456),

where J denotes a generic form factor in the family and where, for the M family we always assume mg = ms.
We also report, for completeness the definitions of all form factors occurring in our paper:

VIpl05-) =" Vilp, V'Olp;--)=Y Vipw, J=EIMGK,H,
i=1,2 i=1,2
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VE(u,v]0; ) = VT prupiw + Vi, Do pow + V5 A1 p2 b + V35, 0, etc,
VIO [ pyvs ) = Vi, D1 Prv + Voo P2 P2v + Voo {0102} i + Via 00 etc,
VMO p,vs ) = Vo Pru 1w + Vi D2p D2v + Vo AD102} 0 + Voo O, etic,
VEO p,vs ) = Vg, 1 P1v + Vagy P2u P20 + Vg {p102} v + Vis, O
VE(ulvs ) =V pippiv + Vi pop p2v + Vo5, P1up2v + ViSe P1v b2y + V.S, O
Vi, v]0; ) = VI prupi + V35, bou p2u + Vm {pip2}w + VS, Oy,
VEO | v --) = 221191“29“ + Vs P2u D2 + Vs {P1 D2} i + Vi 000,
VE(plvs ) = Vi pruprv + Vis, D2p bow + Vm P1uP2v + Vi P1vpaw + Vi O
VE(u,v 105 ---) = VI p1pprv + V5, p2ppow + Vi {pip2 }w + Vi O,
VO p,vs ) = Vol pruprv + Vil Dop p2v + Vi {Ap1p2 b + Vi, O,
VA (v |05 ) = Vi prupu + Vi, poupan + Vm {p1p2} i + Vi, Oy,
VA (ulv; --) =V prup + Vi, paupow + Vi {1 p2}w + Vi b
VM (p,v,a|05--) = VI {001 uva + Vi {002} iva + ViV Ap1p1p2} jwa + VT {P2p201 } v
+ Vs P1u p1v Pra + VY6 P2 P2v P20y etc,
VMO vy 050+ 0) = Vo {001 buwa + Vasao {0 D2} pwa + Vagos 1010102} ywa + Viou {P2P201 }va
+ Vios P11 P1v Pla + Vigos P2ju P20 P2as  €1C,
V¥(plv,os- ) = Vi, {001 wa + Vises 10 P2} pwa + Viges {P10102} uva + Viges {P20201 }uva
+ Ve P1u P1v Pia + Vies P2y D2v D2a,
V¥(uvlas) = Vi {0p1 hwae + Vit {0 p2biva + Vites {P1p1p2}iva + Vites {p2p2p1}iva
+ Viias P1 P1v Pla + Viias P2p P2v P20 + Ve 1001 v o + Vias {10 D2 i 0
VElv,as-) = Vi {0p1tva u + Visee {002} va | + Vites OvaPip + Viday Ovab2p
+ Vias Pla Pip Piv + Visas P2a P2p P2v + Vise AP1P1 D2} av | 1
+ Visas {P2 02 01 oo | pn + Vi Pia P1v P2 + Visaio Pip P2v P2as
VE(vlas) = Vi {dpitw o + Vi {02t o + Vites SpwPia + Vi Spwb2a
+ Vs Pra D1 P1v + Vies P2a P2u P2v + Vis {D10102} | @
+ Vs {Ap2p2p1 o o + Viee P1u P1v D20 + V1o Pra P2y Pau,
VEi(plv,a--) = Vi, {0p1}vap + Vises {002} va |+ Visas OvaDip + Vigas OvaD2u + Viges Do P1u Py
+ Vibae P2a P2y P2v + Vit A1 P1 P2} pwa + Vinos {P1 P2 P2} vas
V(v las-) = Vi {61} o + Vi {6p2buw o + Vit Spwbia + Vit 0pwp2a + Viles Pra Piu 1o

+ ‘/11;126 P2a P2p D2v + V1}1{27 {pl D1 p2},uva + ‘/11;128 {pl D2 p2},uva- (322)

We are now ready to summarize the results; tags were introduced to facilitate the search of the various items,
for instance results related to rank two tensor integrals of the kI group (kI = {11,12,22}) in the J family
(J=E,I,M,G,K and H) are to be searched under the tag Vi;.

B.1 VE (pz, P, {m}1234) family
Results were derived in Section 9.1.1. Referring to Eq.(126), for vector integrals we have

1
Ve = 3 {VE +m3, Vi (pa, P, {m}12,0, {m}314) — Cy:(p2,p1,0, {m}34) Ao([ma, ml])} )

VE = W2 [Vg\l,z\l T V1\1 2\2}

VE = 2 V3|2’1|1+V2I1 2I1+V1|2 1|2+V1|1 2|2}

(323)

n=6—e

)
n=6—e¢

For tensor integrals (see Section 9.1.2) we introduce a vector UL with components

UL\ = 5 [~V @piz+ isa) + 87 (P, {m}iza) = S (b2, {m}rzs)

N =
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+ S5 (P,{m}124) — S5 (p2, {m}123)}7

1
Us.o ==V (5 +m3) = V.S (pr2 — 51134) —2Vips—(n—1) V5,

4 SAP {mros) — 3 SE(P {mroa), (324)
then one obtains .
(Vi) =cvz stvm—-pvs - VAU, (325)
with a generalized function
VE = %wQ V2 v o (326)
For tensors with saturated indices we obtain
VEO ], 1) = =Vi¥ (03 +m3) = 2V5p3 — 2Vi7 pt + S5 (P, {m}124)
VEO|p1,p1) = —(p12 Vas + pi Va7) (p12 + % lisa) + %Pl P {S;‘(P, {m}i24) + 57 (P,{m}124)
- %Pm St (p2, {m}123) + 55 (p2, {m}123)}7
RVEOp2,02) =~V (0 =2 D= VER @D+ 3 piz lisa + )
— V7 (05 +m3) D =V, | D (p12 — % li3a) + pis (P12 + % l134)
+ L SEP (m}1aa) (D + Do+ ) — & S0, {m}izs) Do
= %SZA(R {m}124) (D — D2 = piy) — %Sf(pz, {m}123) D2,
VEO|pr,p2) = —(Vis 3 + V7 p12) (% lisa +p12) + %Pz P {S;*(P, {m}i24) + S5 (P, {m}124)
- %p% [Sf(pz, {m}i23) + 57 (pe, {m}lzs)}- (327)
Furthermore we obtain
VE = 5 [VE 4 m3 Vi o, Py b 0, imlss) + Caulpa,pi, 0, fmdss) Ao(fmz,mi])]. - (328)

Finally, for ¢ < 4 we have

An-1) V7 =nVy + nmzllZ Vizi(pr, P {m}12, 0, {m}34,0)
+ 2 (nm3; +2mi) Vi, (pa, P, {m}12,0, {m}s4)
— ’]’LA()(ml) |:m§2 CQi(27 17 1 y P2, P1, 07 {m}34) - CQi(p27plu 07 {m}34):|
- AO(mQ) |:(37’L - 4) Czi (p27p17 07 {m}34) + nmgl 021(27 17 1 y P2, P1, 07 {m}34):| ) (329)

while, for i = 4 it follows that

4 (n - 1) Vli; = nvzi; -2 (mf + m%) ‘/(JE - VE(OLLL, ,u) + nmzll2 ‘/2]2%1 (pla Pa {m}ua 07 {m}347 0)
+ 2 (nm3; +2m3) Vo, (p2, P, {m}12,0,{m}ss) — miy V; (p2, P, {m}12,0, {m}s4)
—nAy(m1) |:m§2 C24(2,1,15 pa, p1,0, {m}34) — Csu(p2,p1,0, {m}34)}

- Ao(m2) |:(37’L - 4) 024(]927]917 07 {m}34) + nmfg C24(27 17 1 y P2,D1, 07 {m}34):|
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— Au(mn) [m31 Colpe, 1,0, {m}ss) + Bu(pr, {m}as)|

— Ay(ma) [m Co(p2. 1, 0, {m}sa) + By(pr, {m}as)].

(330)

Eq.(330) requires some of the results corresponding to the V' family: they are collected in Section B.2.

B.2 V'(p1, P,{m}12345) family

Results were derived in Section 9.2.1. Introduce a vector U5 with components

U, .= [—1134‘/01 — VZ(p1, P,{m}1245) + V,7(0, P, {m}1235)},

U,.,= {(1154—P2)V01+V0E(07P1= {m}1234) =V, 7(0, P, {m}1235)};

N = N =

we obtain the following result:
VI I I I I
178 =G! U27 Vv (O|p1):U2;17 14 (0|p2):U2:2.

Furthermore we have

1 m123 Im 12
% P — V,: P, 0,
D) ms 21(1717 7{m}12345) 3 m (pl, {m}u, {m}45)

1

Vi (p1, P, {m}12345) =

— 5z Aolimrma]) {8, Y [Cu(pr.pa. {mlass) = Coy (pr,p2, 0. {mbas)|

2msg =i
+ 02 |:Cl2(p17p27 {m}345) - Cy (plap2a 0, {m}45)] }
For rank two tensors (see Section 9.2.2) we introduce a vector U], with components
1
Uy = B {—1134 Vo — Vi (p1, P, {m}1245) + Vi (0, P, {m}1235)}7

1
Upin=—Vos + 5( —lpas) V,, — VE(O,P,{m}1235).

V2123 _ y—lgrI
(V;m —au,

1 1
Wy, = VQIM— liaaV,, — V21(pl,P{m}1245)+ V;f(o P, {m}1235),

1
W, = {( —lpas) Vi, = V37 (0, P {m}1235) + V,7(0,p1, {m}1234].

2
V2121 _ —1 1
<V2,% —cw,

We obtain the following result:

Introduce a vector W}, with components

We obtain the following result:

Furthermore, we get

(2—n) Vb, = Vim3 — V" (p1, P, {m}1215) — [V Lpss + V.2 (p1, P, {m}1245)

+ V;5(0, P, {m}1235) — V% (0, P, {m}1235)]
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For the corresponding tensors with saturated indices we obtain

VIO gy ) = =V m3 + V.2 (p1, P, {m}1245),

V(0 |p1,p1) = % s (Vi pra + VA P3)
— V2 (p1, P,{{m}1245) p1 - P+ V5 (0, P, {m}1235) p12 + V5 (0, P, {m}1235) pi |,
TV p2,p2) = % —Vi Daliza + V5 (Dpf + Dlysa — Dlpas — Dy lhisa) — Vi (p1, P, {m}1245) (5 + D2)
+ ViE(O, P {m}1235) (=D + D2) + VE(0, P, {mhizss) o)
V(0] p1,p2) = % —li3a (Vi 3 + Vi, p12)

— V2 (p1, P,{m}1245) p2 - P + V,2(0, P, {m}1235) p3 + Vi (0, P, {m}1235) p12| -

The form factors corresponding to the 12 and 22 groups are related by

m2
Vi (01, P {m}12345) = o Mzg szzl(pl, P, {m}i2345) + 2 szzl(pl, P, {m}12,0,{m}4s)

+ AVm(Ph P, {m}12345),

1
AV = - ——2
12 2m3

The form factors corresponding to the 11 and 22 groups are related by

4(n—1)m3 V)i, =m3 (2nmiy + nmi —4m3) Vi, (p1, P, {m}12315)
— m3 [ (n = 4)m3 — 2nm3] Vi (o1, P {m}r2,0, {m}s5)
+nmimi, {fo (p1, P.{m}12,0,{m}as,0) = Vi (p1, P, {m}12345, 0)}
— nm3 Ay(m) [Car (pr,p2, {m}ass) = Cuu (p1,p2, 0, {m}as)|
— nmiy Ao([mi, mo]) [m% C5:(2,1,15 p1,p2,0, {m}4s5)
— Cau (p1,92,0,{m}5) + C. (b1, P2, {m}ss)]
+ (3= 4) Ay(m2) |Cuu (b1, 72, {m}sss) = Cas (1,920, {m} )|

for i < 4 and

4(n—1)m3 Vi, = —m3 V' (0lu, 5 p1, P, {m}123a5) — miy Vy (p1, P, {m}12,0, {m}4s5)
+ m3 (2nmiy +nmj —4m?) Vi, (p1, P, {m}12345)

— m3 [(n = ) m? — 2nm3| VLo, (b1, P, {m}1, 0, {m}ss)

+nmimi, [‘Gﬁﬂ(?lapa {m}12,0,{m}ss,0) =V, (p1, P, {m}1234570)}
— nm3 Ag(m1) [024 (p1,p2, {m}345) — Cas (P1,2,0, {m}45)}

— nmd, A([my,ma]) [m3 Cuu(2. 1,15 pr.pa, 0, {m}as)

— Csy (p1,p2,0,{m}s5) + Css (p1, p2, {m}345)}
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+ (3n —4) Ay(m2) [024 (p1,p2, {m}aas5) — Coy (p1,2,0, {m}45)}
1

+ — {—Ao(ml) [mfgg Co(p1, 2, {m}aa5) +m3; Co(p1, 2,0, {m}45)}

3
— Ay(ma) [m%lg Co(p1,p2, {m}315) +mis Co(p1, p2,0, {m}45)}

+ {milz —2mj3 (mf + m%)] Vi (p1, Py {m}12345) -

This expression requires results from the V* family, presented in Section B.3.

B.3 V"(p1, P,{m}12345) family

(343)

Results were derived in Section 9.3.1, in particular the generalized scalar in Eq.(191). Introduce a

vector Uy’ of components

1
Uy, =< [— Vi¥liaa = V' (p1, P, {m}12345) + V' (0, P, {m}12335)} ,

2
1
Uy, = 3 [VOM (lisa — P?) + V, (0, p1, {m}12334) — V' (0, P, {m}12335)} ;

we obtain the following result:

M
(Vﬂ ) —GUy, VMOIp) =UY,, V(0] p) = U

M 2;2°
Vi

We obtain

(344)

(345)

m2 m2
Vi (p1, Py{m}i2s4s) = 271;23 V! (p1, Py {m}12345) + 2—77}; |:‘/21i(plapa {m}12345)
3 3
Ay([m1,m
- ‘/;Il(plu P7 {m}127 07 {m}45):| - % |:Clz(27 17 17p17p27 ms, {m}345) mg
3

+ Cii(p1,p2, {m}3sa5) — Cii(p1,p2, 0, {m}45)}.
For rank two tensors (see Section 9.3.2) we introduce a vector U2 with components

1
Upii=— 3 {1134 Vi + Voo (p1, P, {m}12345) — V5 (0, P, {m}12335)}7

1 1
Upo=—Vou + B (pT — lpas) Voo — B

(&%}):GW;;.

222

Vo (0, P, {m}12335) ;

we obtain the following result:

Introduce a vector W} with components

1
Wy =~V — 3 [‘/211 (p1, P,{m}12345) — V;5(0, P, {m}12335) + l134 ‘/Jf]a

1
Wy, = —5 [—(p% — lpas) Vi + V5 (0, P, {m}12335) — V.5 (0, p1, {m}12334)} ;

we obtain the following result:

VM

223

(‘/2];/11> — G71 WM
22 °
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Furthermore we derive

1 1 1
2-n) Vi, =V¥m3 — - Vi lsa + 3 Vsl (0T = Lpas) — Vi (p1, P, {m}12345) — = V. (p1, P, {m}12345]351)

2 2 21
For tensor integrals with saturated indices we obtain
VYO | py ) = =V;¥ m3 + Vi (p1, P, {m}12345),

1 -
pa V(0| p1,p1) = = |~liza (VX Dy + VY Do) — V' (p1, P, {m}12345) D1

2
— Vo (p1, P,{m}12345) D2 + V5 (0, P, {m}12335) (D1 + D2)j|7
1 -
pIVM(0|p2,p2) = 3 —V liza piy + VA (D p3 — Dlpas — Dalizs) — Vi (p1, P, {m}12345) pio

— Vi (p1, Py{m}12345) D2 — V35, (0, P,{m}12335) (2D — D; — D2)}7

1 -
V(0| p1,p2) = 3 —liza (VY pra + Vi p3) — Vi (1, P, {m}12345) P12 — Vih (p1, P, {m}12345) p3
+ V2 (0, P, {m}12335) p2 - P] (352)

For tensor integrals in the 12 group we obtain

VM _ VM P m§12 m%Q VI P
120 22i(p17 7{m}12345) 2 + 1 22i(p17 7{m}12345)

2mg  2mj
= Vyi(p1, P, {m}12,0, {m}45)} + AV (1, Py {m}12345), (353)
Ay([my,m
AV = — % [Ozi(p17p2, {m}s45) — Cui(p1,p2, 0, {m}a5)
3
+md G2 L1 prpa, {mbass)|, =104 (354)
For tensor integrals in the 11 group we obtain
1 1
Vi = T =1) mi {(”méfzzz — 4mim3) Vi (p1, P {m}ioaas) + Vi3l (1, P, {m}12,0, {m}as) n'mi,
3
2
+ —5 (2mim} —nmymisg) |V (b1, Py {mhiz, 0, {m}as) = Vi, (b, P, {m}izsas) | + AV, . (355)
3

For 7 < 4 we have

2
m
AVY =n (2 % - 1) Ay([m1, ma)) [Cm(pl,pm {m}345) — Cui(p1,p2,0, {m}45)}
3

- nAO([mlv mQ]) |:m%23 C2i(2; 17 1 y P1,DP2, {m}345) + m%Q Ozi(27 15 1 y P1,P2, 05 {m}45):|
+2(n—2) A,(m2) [Czi(]?h]?z’ {m}sss) — Cui(p1, 2,0, {m}as) + m3 Coi(2,1,1; p1, o, {m}345)@356)
2

m
AVY =n (2 ﬁ - 1) Ao([ma, ma)) [024(291,292, {m}s45) — Cou(p1, p2,0, {m}45)}
3

- nAO([mlu m?]) [m%23 C24(27 17 1 y P1,DP2, {m}345) + m%Q 024(27 17 1 sy P1,DP2, 07 {m}45)i|
+2(n —2) Ay(m2) [024(1?17172, {m}ss5) — Cos(p1,p2,0,{m}s5) + m3 Cou(2,1,1; p1, o, {m}345)}
— miy Ao([m1,ma)) [Co(plap% {m}ss5) — Co(p1, p2,0, {m}45)}

- mg 00(27 17 1 y P1,DP2, {m}345) [m%23 Ao(ml) + m§13 Ao(m2):| . (357)
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B.4 VG(Pl,Ph P, {m}12345) family

Results were derived in Section 9.4.1, in particular the generalized scalar in Eq.(199). Introduce a

vector U with components

1
1
ug, = 3 {(—1245 —2p12)V,F = VP (—=p2, =P, {m}s321) + V;7(0, —p1, {m}4321)]

Referring to Eq.(199) we obtain

[—1112 V& + VF(p1, P,{m}1345) — V,7(0, p2, {m}a345)|,

1 1,1|1,2|2
‘/1?:1? |:U10;1+w2p12V07 ‘ 5 ‘
1

]
n=6—e¢

1
G _ G 2,2 1,2]1,2]1 2,111,2[1 1,1]1,2|2
‘/21__{U1;2+w D2 |:VG +VG +VG .
P12 n=6—e
. rehermore we I1in
Ve | Furth find
2 1,1,1]1,22 2 [+,1,2[1,2|1 2,1]1,2|1 1,1]1,2|2
sz;:_wvc‘ | e Vzcz;:_w [VGI |+VG| |+VG‘ ‘} e
n=6—e¢ n=6—e

For rank two tensors (see Section 9.4.2) we introduce a vector US with components
1
Ufiy = Vi (1 =) =V (o m) = 2V p} + 5 | ViS (P~ dpaa = hs)
+ 2 V" (=p2, =P, {m}s321) — V,"(0, —=p1, {m}aza1) — Vi3 (—p2, — P, {m}5321)}7
1
U2G2;2 = 5 -

— V2 (0, =p1, {m}aza1) + Vi7 (=p2, =P, {m}s321) — V.7 (0, —p1, {m}4321)} ;

we obtain the following result:
VQCQ;I _—1lgy76

V§ (P? = lisa) + V.2 (—p2, —P, {m}s321)

1
PRV = Vi = ViEypiz = 5 |V (P = lisa) = Vi (0. =pr. {m}aam) = Vi5 (=p2. P {m} ).

1
G _ 2 1,1,11,1)2
‘/;24 - 5“] VG

When indices are saturated we obtain
Ve |p, 1) ==V (p] +m3) — 2V pi — 2V,5 p1a + V.2 (—p2, — P, {m}s321),
VEO[pr,p) = =V (0F +m3)pf = V5, (n— 1) p}
—2V$pi — 2V D3+ V,”(=p2, — P, {m}s5321) p3,
pIVE(0|p2,p2) = =V (p; +m3) o — Vi, [D +(n— 1)19?2}

n=6—e '

— 2V D3pra — Vi3 [D (P? = ly54) + QPE’Q} + VP (=p2, — P, {m}s321) pi,

+ Vi#(0, =p1, {m}az21) D + V5 (=p2, =P, {m}s321) D,
p12VE(0|p1,p2) = =V.E (p] +m3) iy — Vi, [D + (n— 1)19?2}

1
— 2V D3p1a — 3 Vs {D (P? = ly54) + 41)?2} + V2 (=pa, — P, {m}s321) P15

1 1
+ 3 VZ(0, =p1, {m}a321) D + 3 V5 (=p2, —P,{m}s321) D.
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Introduce a vector U with components

—_

Us= 3 |:_‘/2sz lie + Vi (p1, Py {m}isas) — V,5(0,p2, {m}asas)|,

[\]

1
Ut o =5 VOO )+ Vi midy + Vi iz +2 VS, (0 = 1)

+ 2V;7(0, pa, {m}asas) + Bo(p1, {m}12) Bo(p2, {m}as) — Vo5 (p1, P, {m}1345)} ; (365)
we obtain the following result:
G
Vlff =G U, (366)
‘/122
Introduce a vecror W§ with components
1
WS, = B [2 Vigi (n = 1) = Vi (=P? + las) + ViE m3y + V(0| pp) — V5 (—p2, — P, {m}s301)
— VP (=p2, =P, {m}s321) + V;7(0, p2, {m}2345) + Bo(p1, {m}12) Bo(p2, {m}45)},
1
WS, = B |:_‘/1C1; (P? = lias) + V,”(=p2, —P, {m}s321) — V;”(0, —p1, {m}az21)
— V30, =p1, {m}az21) + V5 (—p2, — P, {m}5321)} ; (367)
we obtain the following result;
G
Vlgl =G WS, (368)
‘/123

Furthermore we get

1 1
Viss = o {ng P54+ Vg, + B {—VDE(—pz, —P,{m}s301) — ViE(=p2, =P, {m}s321) + V.S (P? — 1145)} }7

1
VS, = zwl vt . (369)
2 n=6—e¢
For saturated indices we have
1 -
Ve (u|p) = 3 VEm3, + VE(O | p, p) + V,F(0, pa, {m}azas) + Bo(p1, {m}12) Bo(p2, {m}45)},
1 -
VEpilp) = 3 ~li12 (V.S pr2 + Vi p3) + V2 (p1, P, {m}1345) p12 — Vi (0, p2, {m}a3as5) p12
— V,2(0, p2, {m}2345) pT + ViZ (p1, P, {m}1345)pﬂ,
1 -
iV (p2|p2) = 5 | 7Vea Daluna + VD (=P +lus) + V,5 (D — Dy) li1z
+ Vi (p1, P,{m}1345) D2 — V,7(0, p2, {m}2345) D2 + V" (=p2, — P, {m}s321) D
— V2(0,p2, {m}asas) pTs + Vi (p1, P, {m}13a5) Pl + V.2 (—p2, — P, {m}5321) D},
1
VE(p1|p2) = 3 [—1112 (VS p3 + VG pr2) + V.2 (p1, P, {m}13a5) 03 — V,2(0, p2, {m}2345) p3
— V7(0,p2, {m}2345) p12 + V5 (p1, P, {m}1345)p12},
1
p2Ve(p2lp) =3 [—1112 (Vag Da+V,§ D1) +2V,5, D (n—2) = Vg Dm3; — V(0| pp) D
+ V5 D (=P? + lias) + V, (p1, P, {m}1345) D2 — V5 (0, pa, {m}2345) D2
+ Vi (=pa, =P, {m}s321) D — V;7(0, p2, {m}2345) (D + D1) + V,; (p1, P, {m}1345) D1
+ V5 (—=p2, —P,{m}s321) D — By(p1, {m}12) Bo(p2,{m}ss) D|. (370)
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For form factors belonging to the 11 group we have

1
(=1 pt Vs, = {Vi&, [(n=1) D1 = (n=2) D] + Vi pimd + 5 |
— VEnpi iz + VE(p1, P {m}izas) npt + (n — 2) {Vf; p12 L1z + V,7(0, po, {m}azas) pi
— Vi (p1, P,{m}1345) P12 + V5 (0, pa, {m}2345)p12} },

RV = 5 [~2VSpn2 — VS e + V1, P, {mbisss) = ViEQO, pa, {m}asis)],
(n—1)pi Vs, = % [lm (VS Pt + Vi p12) = 2V,5, D = 2V, pi mi + V7 (0, p2, {m}asas) pi
— Vi3 (p1, P, {m}rzas) pi — V5 (p1, P, {m}1345) pr2 + V5 (0, pa, {771}2345)1712}7
VS, = 4wt VI =8 —¢). (371)
For saturated indices we have
VE(u, p]0) = =V,Emi + V,7(0,p2, {m}2345),
VE(p1,p1|0) = % [—1112 (V.S pT + ViS p12) + Vi(0,p2, {m}a34s) i
+ V5 (p1, P, {m}izas) pT + V. (p1, P, {m}1345) pra — V,5 (0, pa, {m}2345)p12},
(n = )i Vo2 p210) = 3 {2Vi5, (n—2) D2~ 2V Dtk + Vg e [D— (0= 1))
+ Vi przlirz [D = (0= 1) (D + D) | + Vi (0,p2, {m}asas) o} [ D+ (n = 1)
+ (n = 1)p12 (D + D1) [Vf(pla P, {m}iz45) — V7 (0,p2, {m}2345)}
= Vi3 (p1, P {m}1315) p? {D —(n— 1)1?%2] —Dpr2 {Vf(?la P,{m}1345)
= V7 (0, p2, {m}2345)} }7

1
Ve (p1,p2|0) = 3 {—1112 (VS pra + VS p3) + p12 [V()E(O,m, {m}a345)

+ Vis(p1, P, {m}1345)} +p3 [Vf(pl, P, {m}1345) — V.7 (0, p2, {m}2345)} } (372)

B.5 VK(Pa D1, P’ {m}123456) family
Results were derived in Section 9.5.1. Referring to Eq.(226) the vector integrals are

v — 1?2P_2P W2 YLt o VE — VK 42 pLL2.112 o (373)
Introduce a vector Us* with components
Uy, = % {1145‘/0K + V7 (P, P,p1, {m}12365) — V7 (P, P, 0, {m}12364)}7
Uf,=— % [1P46V0K + VE(P, P,p1,{m}12365) — V.C (=P, —P, —pa, {m}21345)} ; (374)
we obtain the following result:
<V§) =G'Wy, WS =UK, WS, =US,-US,. (375)
Vas

69



For rank two tensors (see Section 9.5.2) we introduce a vector U with components

1
U =— 3 [V;«: liss — V5 (P, P,0,{m}12364) + V5 (P, P,0,{m}12364) |,

1
Uk = — 5 [2Vi + VE (P? = Ligs) + V(= P, =P, —ps, {m}1315)

+ VIS (=P, =P, =pa, {m}21345) + VT (P, P, 0, {m}12364) — Vo5 (P, P,0, {m}12364)} ; (376)
we obtain the following result:
K
(VK> — G UK. (377)
Vé22

Introduce a vector W5 with components
K 1 K K
W22;1 = - 5 {2‘/224 + V21 1145

+ VS (P, P,p1,{m}12365) — V.S (P, P,0,{m}12364) + V.5 (P, P,0, {m}12364)}7

1
Wy.=— 3 [V;f (P? —l165) + V.G (=P, — P, —pa, {m}as1a5) + V.S (=P, — P, —pa, {m}21345)
+ V5 (P, P,0,{m}12364) — Vo3 (=P, —P, —pa, {m}21345) — V5 (P, P, 0, {m}12364)} ; (378)
we obtain
(VK> =G'W) (379)
VK - 229
223
and also
1
Vs = m 2Vy© mézl - Vil + Vs (—P* + l165) — V& (=P, —P,—p2,{m}21345)

— 2V (P, P,p1,{m}12365) — Vi (=P, — P, —p2, {m}21345) — V.5 (P, P, p1, {m}12365)] (380)
For saturated indices we get
VO] py 1) = =V mi + Vo? (P, P,p1, {m}12365),
VEQO[p1,p1) = % {—1145 (V¥ 0t + V5 pro) = VS (P, Pypu, {m}r2s65) p
+p1- P {V;f(P, P,0,{m}12364) + Vo5 (P, P, 0, {m}12364)} }7
Py V(0] p2,p2) = % [—V;f lias plo + Vs [(1165 —P*)D — D, 1145} — VS (=P, =P, —pa,{m}21345) D
— V2(P, P.p1, {m}i2s65) T2 — Vil (P, P,0, {m}12364) (2D — Dy — Ds)
+ Vo (P, P,0,{m}12364) (2 D — D1 — D3) — V.7 (=P, =P, —pa, {m}21345) D|,
VE(O|p1,p2) = % {—1145 (V¥ pra + V5 p3) = VS (P, Popr, {m}12365) pr2

+ p2 - P [V (P.P,0, {m}rza0) + ViE (P, .0, {m}izsss)] |- (381)

Introduce a vector U5 with components

1
Uh,=— 3 [Vé lias — VS (P, P,p1,{m}12365)

+ VS(P, P,0,{m}12364) + V.5 (P, P,p1,{m}12365) — V5 (P, P, 0, {m}12364) |,
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Uh..=— % 2V, + V5 (P? = ligs) + V,O (=P, —P, —pa, {m}21345)
— V(P P,0, {mhiasea) + ViS (~ P, = P.=pa, {m}aigss) + V(P PO, {mhases)| 5 (382)
we obtain the following result:
(“;Z) =G 'UE. (383)

Introduce a vector W5 with components
1
Wi =- B {2 Vs, + Vi s + VIS (P, Pypa, {m}12365)},

1
Wi, =— 3 [fo (P? = ligs) + V,C (=P, —P, —pa, {m}21345) — V;5(—P, —P, —pa, {m}21345)

— VS(P,P,0,{m}12364) + V.5 (=P, —P, —p2, {m}21345) + V.5 (P, P, 0, {m}12364)} ; (384)
we obtain
‘/112(1 _ —1 K
)| =G WS, (385)
K23
and also

1
(2-n) V5, = 3 Vi misy — VIS (P? = lies) — Vi lias — V.7 (P, Pp1, {m}12365)
— ViE(=P, =P, —p2,{m}21345) — V' (—p2, =P, {m}23654) — V.5 (P, P,p1,{m}12365)
— VE(=P, =P, =p2, {m}atsas) = Bo(P, {mhiz) Co(pr, pa, {m}ase)] (386)

For saturated indices we obtain

VE(plp) = % |:_‘/;)K mizy + Vo£ (P, P,p1, {m}12365)
+ V' (=p2, =P, {m}a3e54) + Bo(P, {m}12) Co(p1,p2, {m}456)}7
VE(p1|p1) = % {—1145 (VX pT + Vi5 p12) + p12 VS (P, P,p1, {m}12365)
-p1-P {VE(R P,0,{m}12364) — V.5 (P, P,0,{m}12364) + VS (P, P, p1, {m}12365)} }7
VE(p2|p2) = % {—(P2 —lies) (Vi prz + V.5 p3)

—p2- P {VOG(—P, =P, —pa, {m}a1345) — Vi3 (P, P,0,{m}12364) + V. (=P, =P, —p2, {m}21345)
+ Vi$ (P, P,0, {m}12364)} + VS(=P, =P, —pa, {m}21345)]912},

VE(rp2) = 5 {~(P* ~ hios) (VS 52 + Vi pro)
—p1-P {VOG(—P’ —P, —pa, {m}a1345) — V5 (P, P,0,{m}12364) + V.5 (=P, =P, —p2,{m}21345)
+ VS (P.P,0, {m}1as0)| + VS (—P, =P, =pa, {m}21a15) p} }.

VE(p2|p1) = % {—1145 (Vi p2+Visp3) —pa- P {fo(P, P, p1,{m}12365)
+ ViS (P, P,0, {m}12364) — V,5 (P, P, 0, {m}12364)} + 15 [VE(R P,p1, {m}12365)} (387)

for the 11 group we introduce auxiliary quantities (they only appear in the present subsection)

K _ 47,1,111,3,1|3
Vi, = 4wt Vi

3
n=8—e
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v = —mi V) + V' (=P, —p2, {m}23615),

vy = % [—lpu ViT + Vi (o1, Py {m}isase) + Vio (=P, —p2, {m}asess) + Vi' (=P, —p2, {m}23645>}-
vy = % [—lPIZ Vis + Via(p1, PoAm}zase) + Vi (=P, —pa, {m}aseas) + Vi' (=P, —p2, {m}23645)}’ (388)
to obtain
VA =2V~ VI A Vs PPV = VI PR of 40 + S Vi (P45 - 1d),
(n—1)P2VE = % {2”5(]3;2“5(@_2)@%_;)3) — 40K + 205 n+ 205 n
+ Vi {np—_f (pi —p3)* = P*n+2(p +p§)}},
Vi =-Viip -P=Vip2 P+ug. (389)

B.6 V" (—p2,p1, —p2, —P1, {m}123456) family
Results were derived in Section 9.6.1. Referring to Eq.(250) we have

Vi = W2 [V;2|1,1|2,1 _ V3,1|1,1|1,2} . V= W2 Vé,1\1,2\1,2 _ V}},l\z,l\z,l] ' (390)
n=6—e n=6—e¢
Introduce a vector U” with components
1
Ui = 5{1212‘/()11—%(;(]917]917 —p2, {m}se134) + VO (=P, —P, —p2, {m}34256)}7
1
Uy = 5{11561{,”—1—‘/0(3 (P2, P2, —p1, {m}21634) — V£ (P2, P2, —p1, {m}12543)} ) (391)
V12 = 3 (Ul — P12 ‘/11 )7 ‘/21 = 3 (U2 — D12 V22 ) (392)
V&) Y4
For rank two tensors (see Section 9.6.2) we introduce a vector U}l with components
1
UQI;;I = - ) {_V;Iz{ - Vl(f(—]?za —D2,P1, {m}12543) + VE(—P% —D2,P1, {m}12543)
+ V;f(—pz, —D2,P1, {m}12543) - V2§(—p2, —D2,P1, {m}12543) - fo(l’z#’m —P1, {m}21634)
+ Vfi(pz,m, —D1, {m}21634) + Vz(f(p%]?za —Pp1, {m}21634) - V;; (p2,p2, —D1, {m}21634)},
1
Ut a= =5 |2V + Vil liss + 2V, (n = 1)
- V()G(pz,m, —D1, {m}21634) - ‘/13(2927]927 —Pp1, {m}21634) + ‘/;Cz; (p2,p2, —D1, {m}21634)
— V5 (=p2, —p2,p1, {m}12543) + V.5 (—p2, —p2, 1, {m}12543)} ; (393)
we obtain
Vs —qlyH (394)
H - 2279
‘/;22
and also
1
Ve =-Va - Vi + B [VOG (p2,p2, —p1, {m}21634) + Vi lise — V.S (p2, P2, —p1, {m}21634)
— V5 (=p2, —p2,p1, {m}i2543) + Vo5 (P2, p2, —p1, {m}21634) + Vi3 (—p2, —p2,p1, {m}12543)} )
w2
VE = = [Vj’”l’”l’z+V,}’1'1’1'2’1 R ve R +V;}’2'1’1'1’1} L (395)
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When indices are saturated we obtain

VO] g, p) = =V* + Vi (p2, p2, —p1, {m}21634),

VE(O[p1,p1) = % {1156 (Vi pt + Vi pr2) + Vi€ (p2, p2, —p1, {m}21634) i
-p1-P {‘/13(292,]?2, —p1, {m}21634) — Vi3 (P2, p2, —p1, {m}21634)
+ V35 (=p2, =p2, p1, {m}12543) — V5 (=p2, —p2,p1, {m}12543)}
+ P12 {Vlcf(pz,pm —p1,{m}21634) — Vi (P2, p2, —p1, {m}21634)

+ VS (—=p2, —p2, p1, {m}12543) — V5 (—p2, —p2,p1, {m}12543)} },

1
prVI(0]p2,p2) = 5 {—2VDHDm§ + 156 [V;; (2D + D)+ V7 DQ}

—2(n—=2)V,5, D+ V,5(p2,p2, —p1, {m}21634) D1
+ (2D —D; — D) |:‘/1C2;(p2)p2) —p1, {m}aie3a) — V5 (P2, P2, —p1, {m}21634)

+ Vlcz;(—p% —Dp2,P1, {m}12543) - ‘/22(_1727 —Dp2,P1, {m}12543)}
+ Do {Vf(m,p% —p1, {m}a1634) — V.5 (P2, 2, —p1, {m}21634)

+ Vﬁ(—pz, —P2,P1, {m}12543) - ‘/2?(_1)2, —P2,P1, {m}12543)} },

- 1
)
+p2- P {V;i(p%m, —p1, {m}a1634) — V35 (P2, 2, —p1, {m}21634)

V(0] p1, p2) {1156 (V p1a + Vi p3) + Vi€ (p2, p2, —p1, {m}21634) P12

- Vg(—pz, —P2,P1, {m}12543) + V;;(—pz, —P2,P1, {m}12543)}
+ pg [Vf(pmpm —P1, {m}21634) - Vz?(pzvpz, —P1, {m}21634)

+ V5 (=p2, =p2, p1, {m}12543) — V.7 (=p2, —p2, p1, {m}12543)} } (396)
Introduce a vector U/T with components

1
Ult, = =3 2V (= 1)+ 2V md + Vi oo
— V5 (p1,p1, —p2, {m}s6234) — V£ (=P, —P, —p2,{m}34256) — V.5 (=P, — P, —p2, {m}34256)
+ VS (=P, —P,—p2,{m}sa256) + V.5 (p1,p1, —D2, {m}56234)},

1
Uj.,= —5 [—Vf lo1a — VS (p1,p1, —p2, {m}se234) + V.5 (p1, p1, —p2, {m}56234)
— V5 (p1,p1, —p2, {m}s6234) + VS (p1, 1, —D2, {m}56234)} ; (397)
we obtain
Vi) —giun (398)
H - 119
‘/113

and also

1
Vi, = 3 [VSI lorg — 2V, p1o — 2V, + VE (=P, =P, —p2, {m}sa2s6) — V.5 (=P, —P, —pa, {m}34256)
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+ V5 (=P, —P, —p2,{m}s4256) + Vy5 (1, p1, —p2, {m}s6234) — V.5 (p1, 1, —p2, {m}s6234)|.  (399)

For saturated indices we obtain

V(1| 0) = =V" mi + V.G (=P, —P, —pa, {m}34256),

BV (i [0)= 3 {2(2-n) DV, 27 Dmd
+ l212 [Vf; (=2D + D1) + V)T D3| 4+ V,7(=P, =P, —pa, {m}34256) D1
+ (2D - D) [Vl?(_Pa —P, —pa, {m}3za256) — Vo (=P, — P, —pa, {m}34256)}
+ D [Vf(]?l,pl, —p2, {m}s6234) — V,i (p1, p1, —p2, {m}56234)}

+ (2D —D; — Ds3) [Vlcz;(pl,pl, —p2, {m}se234) — Vo5 (P1,p1, —D2, {m}56234)} },

1
V(p2,p210) = 3 {1212 (VE p3 + V2 p1a) + p3 [VDG(—R —P, —pa, {m}34256)
- K?(_P7 _P7 —p2, {m}34256) + ‘/;?(_P7 _P7 —P2, {m}34256)i|
+ p12 [fo (pl,pl, —P2, {m}56234) - Vch(pl,pl, —Pp2, {m}56234)}

+p2- P |:‘/262;(p1ap17 —Pp2, {m}56234) - Vlcz;(pl,pl, —Pp2, {m}56234)} },

1
V*#(p1,p2,]0) = 3 {1212 (Vi p1a + V7 pl) + p1o [VOG(—P, —P, —pa, {m}3a256)
- K?(_P7 _P7 —p2, {m}34256) + ‘/;?(_P7 _P7 —P2, {m}34256)i|
+ p% |:‘/1C1;(p17p17 —Pp2, {m}56234> - Vch (pl,pl, —D2, {m}56234)}

+p1-P [‘/262;(]9171717 —p2, {m}se234) — V35 (1, p1, —D2, {m}56234)} } (400)

Introduce a vector U] with components

1
Uh. = —3 {2 Vi, — Vi lise + VS (p2, p2, —p1, {m}21634) + V.5 (—p2, —D2, D1, {m}12543)} ,
1
U= —5 [—V;f lo12 + VS (p1, p1, —p2, {m}s6234) — V35 (D1, 01, —P2, {m}56234)
= V7 (=P, =P, —pa, {m}34256)} ; (401)
we obtain
‘/1;11 —1 H
v ) =G Ui, (402)
123
and also

1

DV, = 5 {2Vt p} = Vi prolise + Vit i Lons
+ i [VDG(—R —P, —pa, {m}34256) + V5 (—P, —P, —p2, {m}34256) — V.5 (p1,p1, —P2, {m}56234)
+ P12 |:‘/162;(p27p27 —P1, {m}21634) - Vlcf(pz,pz, —P1, {m}21634) - V()G(p27p2, —P1, {m}21634)

+ VS (=p2, —p2, p1, {m}12543) — V5 (—p2, —p2,p1, {m}12543)} },
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2
W 1,1)1,1]1,2 1,1]1,1]2,1
H ) ) ) ) ) )
‘/1 — |:‘/ ‘ ‘ ‘) ‘ ‘

(403)

n:6—e'
For tensors with saturated indices we have
1
V() = 5 |2V (0= 2) + Vi s + Vil Lans

G
2

- Vg(pl,pl, —P2, {m}56234) -V (p27p27 —P1, {m}21634> - ‘/12(_1)27 —Pp2,P1, {m}12543)
+ V¢ (=P, —P, —p2,{m}s42s6) + Vi (—P, — P, —p2, {m}34256)},

1
Vi (p1|p1) = 3 {1156 (VI p 4+ VI pr2) + pi2 [‘/1?(2?2,192, —p1, {m}21634)
+ V% (p2, p2, —p1, {m}21634) + V. (—p2, —p2, p1, {m}12543)}

-p1- P {Vg(pzvpm —P1, {m}21634) + Vg(—pz, —P2,P1, {m}12543)} },

V" (p2|p2) = % {1156 (V¥ pia + Vii D) + V,i Dlg1p + D {VOG(—R — P, —pa, {m}34256)
+ V5 (=P, =P, —pa, {m}3a2s56) — V35 (1, p1, —p2, {m}56234)}
— (ply + D2) |:‘/1(2;(p27p27 —p1, {m}21634) + V,5 (—p2, —p2, 1, {m}12543)}
+ D2 {Vlcf(pz,pm —p1, {m}21634) + V.5 (P2, —p2, p1, {m}12543)

+ V¢ (p2, p2, —p1, {m}21634)} }7

1
VH(p1|p2) =V (p2|p1) = 3 {1156 (V¥ pr2 + Vi p3) + p3 [Vf(pmpm —p1, {m}21634)
+ V% (p2, p2, —p1, {m}21634) + V.S (—p2, —p2, p1, {m}12543)}

—p2- P {Vg(pz,pm —p1, {m}a1634) + V5 (—p2, —p2, 11, {m}12543)} } (404)

B.7 Further reduction of rank two integrals

In this Section we collect all combinations of vector form factors that can be further reduced without
occurrence of inverse powers of Gram determinants. For each combination we list the equation where the
r.h.s. can be found.

PV + Vil Eq.(134),
pz Vo +p12 Vi, pi2 Vi +p3 Vi, Eq.(160),
P Vi + 2 VY, P12 VM + p3 VA, Eq.(179),
PIVS +p2 Vg, P12 VS +p3 V3, Eq.(201),
p1-PVE +py-PVE, p1- PV +py- PVE, PIVE +p1a Vs, Eq.(228),
PV +pa VY, PV + 12 VY, Eq.(254).

Once again we stress that form factors are introduced with respect to a certain basis of vectors which is
fully specified by the corresponding list of arguments; therefore, form factors appearing in the reduction of
other form factors should be interpreted in the appropriate way. We have collected in Tab. 2 the bases for
expansion of tensor integrals occurring in the reduction procedure. A typical example is

VG(N|O;p17p17 —p2, - ) = K?(pluplu —p2, - ')plﬂ - Kg(plaph —p2, ) Pua
VG(:U’|07 _P7 _Pa —p2,- - ) = _‘/1(1;(_P7 _Pa —p2,-- ) P,u + ‘/1(2;(_P7 _Pa —p2,- ')pl,u' (405)

When reducing recursively all symbols must be interpreted as referred to the appropriated basis, i.e.
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Fa'mlly argument Pfirst Psecond
E p2, P D1 D2
E p1, P D2 P1
E 0, P P 0
E 0,p D1 0
E 0, p2 D2 0
E —p2, —P —p1 —Dp2
E 0, —p1 —p1 0
I p1, P D1 D2
I p2, P D2 D1
I 0,m 0 D1
I 0, P 0 P
I —p2, —P —p2 —p1
I —P, —p2 -p2 | —p
I p1,0 D1 —p1
G P1, P1, P P1 D2
G P7 P7 P1 P —P2
G _P7 _Pu_pQ —-P D1
G P,P,0 P -P
G D1, P1, —D2 p1 -P
G D2, P2, —D1 D2 -P
G —p2, —pP2,P1 | —DP2 P

Table 2: The basis pfirst , Psecond for expanding form factors occurring in the reduction of tensor integrals corresponding
to diagrams with a larger number of propagators. First entry is always the defyining representation. An example is
given in Eq.(405).

D= p?lrst pgccond - (pﬁrst ' pSCCOnd)Qv etc, (406)

(see Eq.(9)) where, at the first level of reduction, we always have pgrst = p1 and Psecond = P2-

B.8 Reduction for rank three tensors

For rank three tensors the number of form factors and of contractions (tensors with saturated indices)
increases considerably and it is not convenient to write down all cases explicitly; we prefer to adopt a different
way of collecting the results. The reduction technique is based on two algorithms which we illustrate in the
case of the V' family.

Al. Contraction of tensor integrals with §*” and decomposition of tensors of lower rank

ng n n 92 2v Q2
g / d ql/ P (10 Bl Ao Bl (61
_ n n 92a —m2 n n Q20
‘/ o / O A Bl 6 / d ql/ P 2] Bl 4w Bl Bl

4
- Z [V;l —m3 szl”f} Dia = Z Vi, Dia- (407)

2e
K i=1,2 i=1,2
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A2. Contraction of tensor integrals with with p}' or p4 (or P*) and decomposition of tensors of lower rank:
for instance we obtain

M(O |p17 v, a) = U%zs DPiv Pia + U%zz; D2v P2a + U%zs {plp2}ua + U%zs 61/0¢' (408)

The v}* originate from the decomposition of a rank two tensor after using Eq.(173) and writing
2q2 - p1 = [4la — [3]ar — pT +mi —m3, (409)

and after shifting the loop momenta in order to recover the standard form of diagrams with fewer propagators.
Therefore we have

2
‘/2224 pl ‘/222% P12 +2 ‘/2221 = ;\/2[237 ‘/;1;/124 pl + ‘/21;/126 P12 = ’U;\gm?
‘/2223 pl + ‘/2224 P12 + ‘/212»122 = U;\g%, ‘/2221 pl + ‘/21;/122 P12 = U;\g%. (410)

The choice of contractions is limited by the request that the resulting scalar products be reducible. In
each case one obtains a system of equations for the rank three form factors to be solved in terms of lower
rank form factors and of generalized scalars. Decompositions of vector integrals are defined in Eq.(118),
Eq.(153), Eq.(174), Eq.(195), Eq.(223) and Eq.(252). Decompositions for rank two tensor integrals are
defined in Eq.(138), for VZ, in Eq.(161) for V', in Eq.(180) for V", in Eq.(205), Eq.(210), Eq.(216) for V¢,
in Eq.(232), Eq.(238), Eq.(243) for V¥ and in Eq.(256), Eq.(260), Eq.(265) for V.

B.8.1 Contractions of rank three tensor integrals

In this Section we collect the results for all contractions of rank three tensors (with a Kronecker delta
functions or with an external momentum) that give rise to reducible scalar products. These definitions will
be used in Sects. B.8.3 — B.8.5 to construct tensors with three saturated indices and to build systems of
equations that can be solved for the corresponding form factors. First we define the relevant contractions,
once again those that are leading to reducible scalar products in the numerators:

e M family
VM(O | oy [y V) = Uévzlzl Piv + ’Uévzfzz Pav,
v (O | b1, i, V) = /ng[zs P1p P1v + U32124 P2y P2v + ’U;\g% {p1p2}HV + U32126 6/“”
% (O | b2, 1, V) = ’032[27 PipPiv + 'ng[zg D2p P2v + v;\gw {p1p2};w + ’032[210 6}“”
VM(V | s /J‘) /Uivzlzl Piv + ’Uivzfzz Pav,
VM(M |p17 ) - Ul22'§ P1p P1v + U1224 P2p P2v + U1225 {pIPQ}HV + U1226 6/“”
% (:u |p2a ) - ’01227 Pip P1v + vl228 P2p P2v + 1)1229 {p1p2}#1/ + ’012210 6#1”
v (:U‘ | w,v ) ’012211 P1v + ’012212 Pbav,
v (/1‘7 H | V) = Uﬁ[zl Piv + ’Uﬁm Pav,
% (:ua 4 | pl) vnz% Pip P1v + ’01124 P2p P2v + v1125 {p1p2}#1/ + ’01126 6#1”
% (:ua 14 | p2) ’01127 P1uP1v + ’01128 Pb2p P2v + 1)1129 {p1p2}#1/ + ’011210 6#1”
v (/1'7 v | /J') U11211 Piv + U11212 D2v-
V¥, 1, v [0) = 03y, p1o + 0112 P2v, (411)
e K family
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VK(O | v, v, ,u) = ’02K221 DPip + ’02K222 P2y,
VK (O | P1, K, V) = U2K223 Pip P1v + U2K224 D2 Pov + U2K225 {plp2}uu + 'UgKggg 5u1/7
VK(O | D2, K, V) = U2K227 Pip P1v + U2K228 P2 Pov + U2K229 {plp2}uu + Ugm 6uu7

VK(Vv v, i | 0) = ’01K111 Pip + ’01K112 P2y,
VK(P7 12204 | O) = U1K113 Pip Py + U1K114 P2u P2v + U1K115 {p1p2};w + U1K11G 5#”’7

VK(V V| 1) = 0)1a Pry + U)10s Pops
VE(P, | V) = ) 55 P1u P1v + Vyiaq P2 D2v + Vsias P1p P2u + Vivas Piv D2p + V150r O,
VE( v [ P1) = 0108 P1p P1o + V)00 P2y P2v + V35000 {192} v + Viiary Opuwrs
V5 (1, v | P2) = 010 Pru Pl + Vliors Pop P2 + Vlions AP102} v + V515 Opuns

Vv )=w

K K K
(V H | v 11216 Pl T Viiarr P2ps

V(| v,v) = v Pru + e P2y,

VK(P | 15 V) = 0505 D1y D1y =+ Vysas D2p D2v + Vrsos {D102 } v + Vi Opunrs

VE(| v, p1) = 0f5sr P1uD1v + Visag P2u P2v + Vlsa0 P1u P2v + Vlgaio Plu D2u + Vigary Opws

VE(] vy p2) = 05010 P1u D1v + Vlsars P2u P20 + V)sa1s P1u P20 + Viso1s Pl P2 + V)sa16 O,

VEW v, 1) = 0fsorr Pip + Vissis P2u- (412)

e H family

VH(O | v,v, ,u) = vszzl Pip + vgm P2p,
VH(O|p1,,u, V) = ’0211;23 PipP1v + vfzzz; D2p P2v + vfzzs {p1p2}#1/ + ’UQHQ26 6#1”

VH(Vv v, | 0) = Uflll Pip + ’Ufluz P2u,
VH(p27 M,V | 0) = ’Ufns Pip P1v + vfllm DP2u P2v + vfllw {p1p2}#1/ + ’Ufna 5#1/)

VH(”? v | /J‘) = Uﬁzl Pip + ’Ufll22 P2u,
v (p27 H | V) = Uﬁzs P1p P1v + Ufll24 P2p P2v + ’Ufll% Pip P2v + ’Uflme Piv P2p + ’Ufllw 5#”’?
v (,ua v | pl) = ’Uﬁzg DiuP1v + vﬁm D2u P2v + vﬁmo {ppo},uV + ’Ufl2ll 5#’/’

VH(/J‘ | v, V) = U1HQ21 Pip + ’Uf;zz P2u,
v (p2 | Hy V) = Ufzzs Pip P1v + ’Ufl224 DP2p P2v + ’Ufl225 {p1p2}uu + Uf{zzg 6;,“/7
Ve (,u | val) = vf{227 Pip P1v + vg% P2p P2v + vgm Pip P2v + vgmo P1v P2p + vg211 6#11' (413)

B.8.2 Evaluation of contracted rank three tensor integrals

Successively all contractions of Eqs.(411)—(413) are expressed as linear combinations of form factors of lower
rank. These relations can be used as they stand or we can insert, recursively, results for rank two and rank
one form factors (listed in Sects. B.1 — B.6) until one reaches a result which is written in terms of scalar
integrals only.

e M family Eq.(411)
v

= —m3 VY + Vi (pr, P {m}rozas),  i=1,2
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M

U222 i+2

(%

M

U22210

M
,U1121

M
v112 i+2

U112 i+6

M

v11210

M

’0112 i+10

M

U122'L

UM

M

U122 i+6

,UM

M
U122 i+10

222946

N O N N R

TN OIS O I T Y

122842

TN OIS O ISV O I T Y

12210 ~

_ml VZ\/I

V,

v

—l1

__ll

—liga Vi

224

[ M
—li3a Vo5 —

(liga — lp3s) Vot —

M
1114

M
3a Vi, —

34 ‘/114 -

— _ml V}W

-V,

VI

a3 (01, P, {m}12343)} ,

VI

VI

V,

—m3 VM + Vi(p1, P, {m}12345),

124

—1134 Vi —

—1134 Visa —

Furthermore we define

v

M
1113

1115

V,

VI

1)2,4,1|4
— 36w V241

— 19,0 V1|2 2,34

)
n=10—e¢

)
n=10—e

(l134 — lp3s5) Vs + Vipu(P1,0, {m}12343) —

22 (0, P, {m}12335) |,

Ao(m2) C1i(2,1,15 p1,p2, {m}za5),

(liga — lp3s) VI — V1,0, P, {m}12335)|,

i=1,2,

(1134 —1p35) Vigy + Vi5a (01,0, {m}12343) —

79

(1134 — lp3s) Vi — Vi, (0, P {m}12335) |,

1114

1116

Va0, P, {m}12335)} ;

‘/1124 (07 Pv {m}12335):| )

o (01, Py {m}12345) + V5, (0, P, {m}12335)},

oa (D1, P, {m}12345) + V5, (0, P, {m}12335)},

i=2,3,

Ag(me2) C1i(2,1,15 p1,p2, {m}us),

a(p1, P {m}i2sas) + V1, (0, P, {m}12335)}7

i=2,3,

o (D1, Py {m}12345) + V5, (0, P, {m}12335)}7

i=2,3,

— 19,0 V1\2 3,24

— 360 V21414

i=1,2,

i=1---

i=1,2,

lll(pl’ P, {m}12345) + ‘/1112 (07 P, {m}12335):| , 1=1.-.3,

(li3a = lp3s) VY, — VI1,(0, P, {m}12335) + V1, (p1,0, {m}12343)}7

IIQ'L (p17 P7 {m}12345) + ‘/1122 (O, P)7 {m}12335)} s 1= 1 e 3,

)
n=10—e¢

n:lofe.

3,

(l13a = Ip3s5) Vo3 = Voo (0, Py {m}12335) + Vi3, (p1,0, {m}12343) + V5, (01,0, {m}12343)

(liza = lp3s) ViY) — Vi1, (0, Py {m}12335) + Vi, (p1, 0, {m}12343) + Vi1, (p1, 0, {m}12343)

Vi (p1,0, {m}12343)} ,

(1134 —lp35) Vigy = Vs (0, Py {m}12335) + Vi, (p1, 0, {m}12343) + V35, (1, 0, {m}12343)

Vi2a(p1,0, {m}12343)} ,

(414)

(415)

—m123 V¥ +Vip1, P,{m}i2345) — Ao(m2) C1,(2,1,1; p1, po, {m}345)}, i=1,2, (416)

m123 Vi + V(o1 P {m}izas) + Ao([ma, me]) C1i(2, 1,15 p1, pa, {m}345)}, i=1,2(417)

(418)



e K family Eq.(412)

K

’02221

K
U2222

K

’02223

K

U2224

= -V mj+ V(PP p1,{m}izses),
= —VEm3i+ VS (P, P p1,{m}iases) — V.5 (P, P,p1, {m}12365),

1
=5 {—V;z(l lius — Vo5, (P, Pyp1, {m}12365) + V.5, (P, P,0,{m}12364)
+ Voo (P, P, 0, {m}12361) — 2V,5, (P, P, 0, {m}12364) |,

1

= 5 |:_V212<2 1145 - ‘/2(2;1 (P7 P7p17 {m}12365) + ‘/2(2;1 (P, P, O, {m}12364)

— V5, (P, P,p1, {m}12365) + Vo3 (P, P, 0, {m}12364) + 2 Ve (P, P, p1,{m}12365)
— 2V, (P, P,0,{m}12364) |,

1 -
=5 __‘/2}2(3 lius — Vo5, (P, Pyp1, {m}12365) + V.5, (P, P,0,{m}12364)

+ V5, (P, P,0,{m}12364) + V.5, (P, P, p1,{m}12365) — 2 Vo (P, P, 0, {m}12364)} ,

1 -
=5 _—‘/2}2(41145 — V5. (P, P,p1,{m}12365) + V,5,(P, P, 0, {7n}12364)]7
1 -
=3 VQIQ(I (lies — P?) — V.S, (P, P,0,{m}12364)
+ VS (=P, —P, —pa, {m}a1345) — V.S, (P, P,0, {m}12364) + V.5, (— P, — P, —p2, {m}21345)
+ 2V5 (P, P,0, {m}12s64) — 2Vi5y (=P, =P, —pa, {m}a1345) + 2 Vi (=P, =P, —p2, {m}21345)

— 2V (=P, =P, —pa, {m}21345) + V7 (=P, = P, —pa, {m}21345)] 7
1
=3 [Vzlz(z (ligs — P%) — V.S, (P, P,0, {m}12364)
+ VS (=P, —P,—pa2,{m}a1345) — V.5, (P, P,0,{m}12364) + 2 V,5,(P, P,0, {m}12364)
+ 2V i (=P, —P,—pz,{m}o1345) + V.7 (=P, — P, —pa, {m}21345)} ,
1
=3 {V;;@ (lies — P?) = V.5, (P, P,0, {m}12364) + V.5, (— P, =P, —p2, {m}21345)
— VS, (P, P,0,{m}12364) + 2 V.5, (P, P,0,{m}12364) — V.5,(— P, — P, —p2, {m}21345)
+ 2V (=P, —P,—pa, {m}a1345) — V.S (=P, =P, —pa, {m}21345) + V.S (=P, — P, —pa, {m}21345) |,

1
2 [V;;“ (lies — P?) = Vi3, (P, P,0,{m}12364) + V,5, (=P, =P, =p2, {m}21315) |, (419)

vl = =V mi = Vi(=p2, =P, {m}asesa) — V; (—p2, — P, {m}23654),

vl = =Vis mi = Vi (—pa, =P, {m}ase51) — V' (—p2, — P, {m}3654),

Uiy = % :—fol ez + Vi, (p1, Py {m}isase) — Vi, (—p2, =P, {m}23654)
— 2V, (=p2, =P, {m}a3654) — V' (—p2, — P, {m}23654>}7

Vg = % :—fog lp12 — Vi, (=p2, =P, {m}a3es4) + V1, (P1, P, {m}13456)
= 2V i (=p2, =P, {m}23654) — V' (=p2, = P, {m}23654>}7

Vs = % :—fog lp12 + Vi (p1, Py {m}1sas6) — Viiy(=p2, — P, {m}23654)

- ‘/111(_1927 _P7 {m}23654) - ‘/112(_192, _P, {m}23654) — ‘/()I(—p27 _P, {m}23654)j| ,
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1

Vi = 3 {—Vlﬁ lp12 + Vi (p1, Py {m}13a56) — Vii,(=p2, — P, {m}23654)}7 (420)

v, = —VEmi — VL (—=pa, — P, {m}ases4) — V; (—p2, — P, {m}23654),
vf,, = =V mi — Vi (—pa, —P, {m}asesa) — Vi (—p2, —P, {m}ass4),

1
Vins = 3 Vs iz + Vi (prs Po{mbisase) — Vi (=2, =P, {m}23654)
— Vo (=p2, =P, {m}asesa) — Vi3 (—p2, =P, {m}azes4) — V| (—=p2, =P, {m}23654) |,
1 -
VY1 3 _—Vf; lpi2 — Vi, (—p2, =P, {m}a3es4) + Vib, (D1, P, {m}13456)
— Vi (=p2, =P, {m}a3654) — V' (—=p2, =P, {m}asesa) — V' (—p2, =P, {m}23654) |,
1 -
Vs = 3 _—Vf; lp12 + Vi (01, P {m}13as6) — Vs (—p2, =P, {m}23654)
— Vi (=p2, =P, {m}23654) — Vi3 (—p2, =P, {m}a3es4) — V| (—=p2, =P, {m}23654) |,
1 -
Ve = 3 _—Vf;) lpi2 — Vi, (—p2, =P, {m}a3esa) + Vibs (01, P, {m}13456)
— Vo (—=p2, =P, {m}23654) — V}\(=p2, =P, {m}a3654) — V| (=p2, =P, {m}23654) |,
1 -
V)ipr = B —Vizileiz + Vi, (p1s Po{mbisase) — Viz, (=2, =P {m}2ses4) |,
1 -
V))as = 3 _—fol lis — VS, (P, Pyp1, {m}12365) + V5, (P, P,0, {m}12364)
+ V5, (P, P,0, {m}12364) — 2 V,5,(P, P,0,{m}12364) |,
1 -
Vy)py = B __‘/1}1(2 lis — VS (P, Pp1, {m}i2365) + V.5, (P, P,0,{m}12364)
— VS, (P, Pp1,{m}i2365) + V.5, (P, P,0,{m}12364) + 2 V5, (P, P,p1,{m}12365)
- 2‘/161;3([_)7 P7 05 {m}12364) 5
1 -
Uiizio = 5 |~ Vils lias = VIS (P Py py, {mbizses) + VIS, (P, P, 0, {m}i2sea)
+ VS, (P, P,0, {m}12364) + V.S, (P, P,p1, {m}12365) — 2V 5,(P, P, 0, {m}12364)}7
1 -
Vyian 3 __‘/111(4 las — ViS,(P, P, p1, {m}12365) + V.5, (P, P, 0, {m}12364)}7
1 -
Vyinis = B _fol (lies — P?) = V.S, (P, P,0, {m}12364) + V;5, (= P, =P, —=p2, {m}21345)
= V5,(P, P,0,{m}12364) + V5,(—=P, =P, —pa, {m}a1345) + 2 V.5, (P, P,0, {m}12364)
— 2V, (=P, =P, —p2, {m}a1345) + 2V, (=P, =P, —p2, {m}21345) — 2 V5 (=P, =P, —p2, {m}21345)
+ Vi¥(=P, =P, —p2, {771}21345)}7
1
Uiz = 5 {foz (lies — P?) = V.5, (P, P,0,{m}12364) + V.5, (=P, =P, —pa, {m}21345)
— V5, (P, P,0,{m}12364) + 2 V5, (P, P,0,{m}12364) + 2 V.S (=P, =P, —p2, {m}21345)
+ Ve (=P, =P, —p, {m}21345)},
1
Vyions = 3 {‘/111(3 (lies — P?) = V.S, (P, P,0, {m}12s64) + V,5, (= P, =P, —pa2, {m}21345)

— VS, (P, P,0,{m}12364) + 2V, (P, P,0, {m}12364) — V.$,(—P, —P, —p2, {m}21345)
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+ 2V (=P, —P, —pa, {m}a1345) — V.5 (=P, —P, —p2, {m}21345) + V,°(— P, — P, —p2, {m}21345)},

|
E

K _
Uiaoy =
K
Uigoo =

K

U1223

Il
N o

+

1229 ~

+

H
=
[V
2
o
NI= Y NN

T2

Vlﬁ (lies — P?) = V.S.(P, P,0,{m}12364) + V5, (=P, — P, —p2, {m}21345)} ;
—VEmis, + ViE(P,P,p1, {m}12365) — V5 (—=p2, — P, {m}23654)
1(P, {m}12) Co(p1,p2, {m}ase) — V' (—p2, — P, {m}23654)}7

—Vg misy + VS(P, P,p1, {m}1236s) — V.S (P, P, p1, {m}12365)

Vi m4+V1C1;(PPP1,{m}12365)

= —VEm3 +VS(P,P,p1,{m}iases) — V.S(P, P,p1, {m}12365),

= | =Va5 le12 + Voo, (D1, P {m}13as6) — Viio (—p2, —P, {m}23654)
Vo (=p2, =P, {m}23654) — V,/ (—p2, — P, {m}23654)}7
=V, 12 = Vo (—p2, =P, {m}23e54) + Vi, (p1, P, {m}13456)

V;i (=p2, —P,{m}ases4) — V' (—p2, — P, {m}23654)},

N o -

% :_szz{s lp12 + Vs (01, P, {m}13456) — Vs (=02, —P, {m}23654)

Voi(=p2, =P, {m}ase654) = V,o(=p2, =P, {m}ases4) — V' (—p2, =P, {m}23654)}7
% —Visu lerz + Vs, (p1, P {m}isase) — Viou (—p2, = P, {m}23654)},

% =V lias — Vi$, (P, P,p1, {m}12365) + Vi3, (P, P, 0, {m}12364)

VS (P, P,0,{m}12364) — V.5,(P, P,0,{m}12364) — V.5, (P, P, 0, {m}12364)},

—Vi5, lias — VS, (P, P,p1, {m}12365) + Vo5, (P, P,0, {m}12364)
— VS, (P, P,p1,{m}12365) + V.5, (P, P,0,{m}12364) + V.5, (P, P,p1,{m}12365)

— V5(P, P,0,{m}12364) + V5, (P, P, p1, {m}12365) — Vios (P, P, 0, {m}12364)},

N =

[ ‘/1}2(3 1145 - V1C2;1 (Pa Paplv {m}12365) + ‘/1C2;1 (Pa P, 07 {m}12364)

VS, (P, P,0,{m}12364) + V.5, (P, P, p1, {m}12365) — V5, (P, P, 0, {m}12364)
— V5. (P, P,0,{m}12364) |,

1

N =

=3 [—Véi—) lias — ViS5, (P, P,p1, {m}12365) + V5, (P, P,0, {m}12364) + V5, (P, P,0,{m}12364)

2
— V5, (P, P,0,{m}12364) + V5, (P, P, p1, {m}12365) — V.5, (P, P, 0, {m}12364)},

1
=35 |:_‘/1I2(4 1145 - ‘/124(P5 Paplv {m}12365) + ‘/162;4 (Pa Pa 07 {m}12364):| )

2
1
{Véfl (lies — P?) = Vi3, (P, P,0,{m}12364) + Vi3, (—P, =P, —p2, {m}21345)

— V5, (P, P,0,{m}12364) + V.5, (=P, =P, —p2, {m}21345) + V5, (P, P, 0, {m}12364)

— VS (=P, —P,—p2,{m}21345) + V.5, (P, P,0,{m}12364) — V5, (=P, =P, —p2, {m}21345)
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U (=p2, =P, {m}23654) + B (P, {m}12) Co(p1, p2, {m}ass) — V' (—p2, — P, {m}23654)}7
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+ V5 (=P, =P, —p2,{m}a1345) — V5 (—P, =P, —p2, {m}a1345) + V.S (=P, =P, —p2, {m}21345)
— VS(=P,—P,—p2,{m}2i345) + V,° (=P, —P, —pa, {m}21345)},

Vians = 5 [V (s = P) = VG (P, PO, {mrases) + VE (<P, =P, ~pa, {m}aisus)
— V% (P, P,0,{m}12364) + Vi3, (P, P,0, {m}12364) + V.55 (P, P, 0, {m}12364)
+ V5 (=P, =P, —pa, {m}a13a5) + V,S (=P, =P, —p2, {m}21345) + V,° (=P, =P, —p2, {m}21345) |,
Vians = 5 [V (s — P) =~ VES(P, PO, {mrases) + VE (=P, =P, ~pa, {m}ziaus)
= ViR (P, P,0, {m}12364) + Vi5, (P, P,0,{m}12364) + Vi3, (P, P, 0, {m}12364)
— Viss (=P, =P, =pa, {m}21345) + V.5 (=P, =P, —pa, {m}21345) + V.5 (=P, =P, —pa, {m}21345)
— VS(=P, =P, —pa, {m}ai3s5) + V7 (=P, =P, —pa, {m}21345)},

oK :l VK

2215 = 5 | Vizs (lies — P?) = V.5, (P, P,0, {m}12364) + V;5, (= P, =P, —p2, {m}1345)
— Vo, (P, P,0,{m}12364) + V5, (P, P,0, {m}12364) — V.5, (=P, =P, =p2, {m}21345)
+ VS, (P, P,0,{m}12364) + V.S (=P, —P, —p2, {m}21345) — V5 (=P, — P, —p2, {m}21345)

+ VS (=P, —P,—p2,{m}21345) + V.7 (—P, — P, —p2, {m}21345)},

Vtoare = % Vias (hes = P?) = VS(P, P,0, {m}12364) + V5, (=P, =P, =ps, {m}21345)}7
Ufgarr = % :—V;f misy + VS (P, Pyp1, {m}12s65) — Vi (=p2, — P, {m}23654)

+ Bo(P,{m}12) Cii(p1,p2, {m}ase) — V, (—p2, — P, {m}23654)}7
Vfha1s % :—V;; misy + V.S (P, P,p1, {m}12365) — V5 (P, P,pr, {m}12365)

N

~

(—p2, =P, {m}a36s54) + Bo(P,{m}12) Cr2(p1,p2, {m}ase) — Vi (—p2, =P, {m}23654)] (422)

2
e H family Eq.(412)

It is convenient to define certain combinations of form factors to be used in this family (they only appear in
the present subsection):

V;{z = Vv1111+‘/2121 _2‘/11217 VB{l :Vvli—i—‘/zlw VACi :‘/1?1 _Vvlcz;w VBG¢ :V;C;Z _Vvlcz;w
Ve =Vi-Ve, Vi.i=V5 - Vi (423)
We obtain
0o, = =V mZ + ViE (p2, p2, —p1, {m}a1634) — VS, (D2, D2, —p1. {m}21634),
Vynor = — Voo mg + VcG1 (p2, P2, —P1, {M}21634) — VCG2 (p2, P2, —p1, {m}21634),

1
Vynog = B |:V212{1 (2p3 — l165) + V,7 (P2, P2, —p1, {m}21634) + V5 (2, p2, —p1, {m}21634)
— Vi (=p2, —p2,p1, {m}i2543) + V5o (D2, P2, —P1, {m}21634) — V5o (—p2, —p2, p1, {m}12543)
- 2V£(p27p27 —P1, {m}21634) )

1
Vgnos = 3 [‘/;I;z (2p7 — ligs) + V5 (p2. p2, —p1, {m}21634) — V.G (—p2, —p2, p1, {m}12543)

+ VBGl (pz,pz, —P1, {m}21634) - VBGI(_p27 —P2,P1, {m}12543) + VAGQ (pz,pz, —P1, {m}21634)
— Vi (=p2, —p2. p1, {m}12543) + V5o (D2, 2, —p1, {m}21634) — Viss(—p2, —p2, p1, {m}12543)
— 2V (p2, p2, —p1, {m}21634) + 2 V.5 (—=p2, —p2, p1, {m}12543) — 2 Vi (p2, p2, —p1, {m}21634)
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+ 2V (=p2, —p2, 1, {m}12543) + 2 V5, (D2, D2, —p1, {m}21634) — 2VS 1 (—p2, —p2, 1, {m}12543) |,

H

1
Ugg2s = ) [‘/2}2{% (21?% —lie5) + Vc?l (P2, P2, —P1, {M}21634) + Vz(pzvpz, —p1, {m}21634)

- VAGQ(—pm —P2,P1, {m}12543) + Vﬁz(pz,pz, —P1, {m}21634) - VBGQ(—pm —P2,P1, {m}12543)
- V(,?z(]?zapm —D1, {m}21634) - VAi(p27p27 —D1, {m}21634) + VA%(_p27 —Dp2,P1, {m}12543)

- Vscg (p2,p2, —D1, {m}21634) + VBC;(_p27 —D2,P1, {m}12543) + VgA (p27]927 —D1, {m}21634)

- Vlcz;A(—Pza —D2,P1, {m}12543) )

H

1
Ugg26 = 3 [‘/2}2{4 (21?% —lies) + Vﬁ(m,pz, —p1,{m}21634) — Vﬁ(—pm —p2, 1, {m}12543)

+ V5i(p2, p2, —p1, {m}are3a) — Vi (=p2, —p2, p1, {m}12543)}, (424)

Uiy = =Viimi = VE (P, Pp2, {m}aazse) + VS, (P, P,p2, {m}za2s6),
v, = =V mi + VE(P,P,pz, {m}sazse) — VE(P, P, pa, {m}s4256),
Vs = % [fol lo12 + V5 (P, P,pa, {m}34256) — Vi (=P, =P, —p2,{m}21345)
+ V5 (P, Pypa, {m}aazs6) — Visi (=P, — P, —pa, {m}21345) + Vi, (P, P, pa, {m}34256)
— Vo (=P, =P, —p2,{m}21345) + Vi (P, P, p2, {m}34256) — Vigo (=P, =P, —p2, {m}21345)
— 2V 5(P, P,p2, {m}3a2s6) + 2V, (=P, — P, —p2,{m}21345) — 2V, (P, P, p2, {m}34256)
+ 2 V5, (=P, =P, —p2,{m}a1345) + 2 VS, (P, P, p2, {m}3a256) — 2 V5, (=P, =P, —p2, {m}21345) |,

1
CHIE B [sz lo12 + V,E(P, P, pa, {m}sa2s6) + Vi (P, P, p2, {m}34256)
— Vi (=P, =P, —ps, {m}21345) + V5 (P, P, p2, {m}3a256) — V5, (=P, =P, —p2, {m}21345)
— 2VS (P, P, p2, {m}sa2s6) |,

1
Vs = [fo; lo1a + V.5 (P, P,pa, {m}sa256) — V.5 (—P, —P, —p2, {m}21345)

2
+ Vi (P, P, p2, {m}sa256) — Vi5i (=P, =P, —pa, {m}21345) — V5 (P, P, p2,{m}34256)
+ Vc?z(P7 P7 D2, {m}34256) - VAGg(P7 P7 D2, {m}34256) + VAG3(_P, —P, —p2, {m}21345)
- VBGa (Pu Pu b2, {m}34256) + VBC;(_P, —P, —Pp2, {m}21345) + ‘/IC;A (P, P, D2, {m}34256)

— V5. (=P, =P, —pa,{m}21345) |,

1
Vi1 = 3 |:‘/II£{4 lo12 + V.5, (P, P, pa, {m}34256) — V.5, (=P, =P, —p2,{m}21345)

+ V5. (P, P, p2, {m}sa256) — V5, (=P, —P, —pa, {m}21345) |, (425)

vy, = =V mi + VS (P, P,p2, {m}sazse) — Va3 (P, P, pa, {m}sa256) + V,* (P, P, pa, {m}34256),
lelzz = _‘/221 m% + ‘G?(Pv Pv b2, {m}34256) + VOG(Pa P, D2, {m}34256)a
1
Vy1ps = B [Vf;l la1a + V35 (P, P, pa, {m}za256) — V5i (=P, =P, —p2, {m}21345)
— VS (P, P,p2, {m}sa256) + V5. (P, P,p2, {m}sa256) — V5, (=P, =P, —pa, {m}21345)

+ VS(P, P, pa, {m}3a2s6) — 2 V5, (P, P, p2, {m}sa256) + 2 V5, (—P, —P, —p2, {m}21345)
+ V5. (P, P, pa, {m}3a2s6) — V5, (—P, —P, —pa, {m}21345)},

1
VY1py = B [V& la1a + V5 (P, P,pa, {m}3a256) + V,* (P, P, p2, {m}34256)
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+ VS (P, P,pa, {m}a4256) — V5, (=P, =P, —p2, {m}o1345) — V5, (P, P, p2, {m}34256)
+ VS (=P, —P,—pa, {m}21345) |,

1
Vy1ps = B [Vf;g la1a + Vi (P, P, pa, {m}za256) — V5, (=P, =P, —p2, {m}21345)
— VS(P, P,p2, {m}3a2s6) + VS (=P, — P, —p2, {m}21345) + V5, (P, P, p2, {m}34256)

- VCG2(_P7 _Pa —D2, {m}21345) - VBG3(P5 Pa D2, {m}34256) + VBG3(_P5 _Pv —Dp2, {m}21345)
+ V5. (P, P, pa, {m}3a256) — V5, (—P, — P, —pa, {m}21345)},

1
Vy1p = B |:‘/1215 lor2 + VS (P, P, pa, {m}s4256) — Vs (P, P, p2, {m}34256)

+ V,(P, P, p2, {m}3a2s6) + V5. (P, P, p2, {m}sa256) — V5. (—P, —P, —pa, {m}21345)
— VS (P, P, p2, {m}3a2s6) — Vigy (P, P, p2, {m}3a2s6) + Vi, (—P, —P, —pa, {m}21345)},

C1
1
Ui, = 3 [V& lo12 + VS.(P, P,p2, {m}sa2s6) — V5, (=P, —P, —pa, {m}21345)},
1
Uﬁzg = ) |:‘/1i11 (2]9% - 1165) + ng (p27]927 —D1, {m}21634) - ‘/122(—]92, —P2,P1, {m}12543)
+ V& (p2, p2, —p1, {m}21634) — Vi (—p2, —p2, p1, {m}12543)},

1
Uﬁzg = ) |:‘/1i12 (2]9% - 1165) + ‘/1(2;1 (p27]927 —D1, {m}21634) - Vgl(—Pz, —pP2,P1, {m}12543)
+ V.5, (p2, p2, —p1, {m}21634) — V5, (—p2, —p2, p1, {m}i2543) — 2 V.5, (p2, 2, —p1, {m}21634)
+ 2V5,(=p2, —p2,p1, {m}12543) + 2 V.5 (D2, P2, —p1, {m}21634) — 2 V.5 (P2, D2, —P1, {m}21634)
+ V& (p2, p2, —p1, {m}21634) + Vi (D2, 2, —p1, {m}21634) — Vi (—Pp2, —p2, 01, {m}12543)
+ 2VS (p2,p2, —p1, {m}21634) + Vs (D2, P2, —p1, {m}21634) — Vi3 (—p2, —p2, p1, {m}12543)

— 2V5,(p2, p2, —p1, {m}21634) — 2V 55 (D2, P2, —P1, {m}21634) + 2 Vi (—p2, —p2, p1, {m}12543) |

1
RIS ) |:‘/1]:3 (QP% - 1165) + ‘/122 (p27p27 —P1, {m}21634) - Vf;z(—pm —P2,P1, {m}12543)

11210
- ‘/1(53(]927]927 —D1, {m}21634) + sz;s(—]?z, —D2,P1, {m}12543) - V;; (p2,p2, —DP1, {m}21634)
+ Vi (p2,p2, —p1, {m}a1634) — Vo (—p2, —p2, p1, {m}12543) — Vi (p2, p2, —p1, {m}21634)

— Vi (p2,p2, —p1, {m}21634) + Vi (—p2, —p2, 01, {m}12543)},

1
Uiy = 3 [V& (217% —ligs) + ‘/124(1)271727 —p1, {m}21634) — ‘/162;4(—172, —p2, 1, {m}12543)

+ Vi (p2, p2, —p1, {m}21634) — V.$ (—p2, —p2, p1, {m}12543)},

vl = =V mZ = V5 (p2,p2, —p1, {m}a163s) — VS, (P2, P2, —p1, {m}21634),
H

Uiy = = V35 m?) + V.5 (P2, p2, —p1, {m}21634) — V.5 (D2, P2, —p1, {m}21634)
+ V;G(p%]?z, —DP1, {m}21634) + V(,f;l (Pzapza —D1, {m}21634) - VcG2 (p2,p2, —D1, {m}21634)7

1
lezzs = 5 ‘/212{1 lo1o + ‘/1C2;1 (Pa P, pa, {m}34256) - ‘/162;1(_P7 —P, —po, {m}21345)

+ Vis, (P, Ppa, {m}3a256) — V,5,(— P, — P, —p2, {m}a1345) — 2 V5, (P, P, p2, {m}34256)
+ 2V, (=P, =P, —pa, {m}a13a5) + 2 V7 (P, P, p2, {m}3za256) — 2V,5(P, P, p2, {m}34256)
+ V2 (P, P, p2, {m}aaas6) + Vi (P, P, p2, {m}aaas6) — Vi5i (=P, =P, —p2, {m}21345)
+ Vi (P, Pypa, {m}3a256) — Vigo (=P, =P, —pa, {m}21345) — 2 V5, (P, P, p2, {m}34256)

)

+ 2V (=P, —P,—p2,{m}o1345

)
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1
Vihoy = 3 {V;I;g lo12 + V5, (P, P,pa2, {m}sa256) — V.5, (—P, —P, —p2, {m}21345)
+2 ‘/2? (Pa Pa D2, {m}34256) -2 ‘/2(1;(_P5 _Pv —D2, {m}21345) + ‘/DG(Pa Pa D2, {m}34256)

— V9 (=P, =P, —p2,{m}21345) + Vi, (P, P, p2, {m}aa256) — Vi5i (=P, =P, —p2, {m}21345) |,

1

Vfpos = B {Vzlzifs la1a + V35, (P, P, p2, {m}3a256) — V.5, (=P, — P, —pa, {m}21345)

— V5, (P, P, p2, {m}aa2s6) + Vi5,(—P, — P, —p2, {m}21345) + 2 V5 (P, P, p2, {m}34256)
— V5 (=P, =P, —pa, {m}21345) — Vo5 (P, P, p2, {m}sa2s6) + Vy3 (=P, —P, —p2, {m}21345)
+ V2 (P, P, p2, {m}aaas6) + V5. (P, P, pa2, {m}aaas6) — Vi (—P, =P, —p2, {m}21345)

— VS.(P, P,p2, {m}sa256) + V5, (=P, — P, —p2, {m}21345)},

1
UIH226 = 5 |:V212{4 lo1s + ‘/1C2;4 (Pa P, pa, {m}34256) - ‘/162;4(_P7 —P, —po, {m}21345)

+ V5, (P, P, pa, {m}sa256) — V5, (=P, —P, —pa, {m}21345)},
1
Vypor = B [Vf; (2pT — ligs) — VS (p2, p2, —p1, {m}a1634) + V.S (D2, 2, —p1, {m}21634)
- VAG2(_p25 —P2,P1, {m}12543) - VcG2 (p27p27 —P1, {m}21634)}7

1
Vypos = B {Vlgz (2pT — ligs) + V& (p2, p2, —p1, {m}21634) — V.S (=p2, —p2, p1, {m}12543)

+ VS (p2,p2, —p1, {m}a1634) + V., (P2, P2, —p1, {m}o1634) — Vi (—p2, —p2, p1, {m}12543)
— V& (p2, p2, —p1. {m}21634) — 2V, (P2, 2, —p1, {m}21634) + 2 Vi (—p2, —p2, 1, {m}12543)

+ V$5a(p2,p2, —p1, {m}21634) — V54 (—p2, —D2, p1, {m}12543)},

1
Uiz = 5 {Vf«fs (2pT — l6s) + Vi (P2, p2, —p1, {m}a1634) — Vi (—p2, —p2, p1, {m}12543)
— Vi (p2,p2, —p1, {m}ai63a) + Vi (—p2, —p2, p1, {m}12543) + V5. (p2, D2, —p1, {m}21634)
- ‘/1(2;4(—192, —Dp2,P1, {m}12543)} )

1
Uflmo = ) [Vf;s (217% —ligs) + Vz(f(Pzapz, —p1, {m}21634) — Vg(pzvpm —p1, {m}21634)

+ V& (p2,p2, —p1, {m}21634) + V5, (2, 2, —p1, {m}21634) + Vi (p2, P2, —p1, {m}21634)
- Vfg(—p% —Dp2,P1, {m}12543) -2 Vccz (p2,p2, —DP1, {m}21634) - VAi(Pzap% —DP1, {m}21634)

+ Vi (=p2, —p2, 11, {m}12543)} ,
1
Uiy = 3 VE (2p3 — lies) + VE(p2, b2, —p1, {m}21634) — V.E(—D2, —D2, 1, {m}12543) | - (427)

In the following Appendices results for rank three tensors with completely saturated indices are presented.
At the same time we give an explicit solution for the form factors which are needed, implicitly, for some of
the contracted expressions and, explicitly, for testing WST identities. We recall that tensors with saturated
indices are of the upmost importance for applications related to projection techniques (see Section 4).

B.8.3 The V™ family
Almost all contracted tensors in this family can be trivially obtained using Eq.(411) and the definitions of
Eqs.(414)—(417). Only for the 111 group we have to solve first for the form factors and then to replace the

resulting expressions into the decomposition of the saturated tensors; in this way we are able to obtain

VM(M? My P1 | 0) = /Uivlln p% + /Uivlllz P12, VM(Ma M, P2 | 0) = ’Uivlfu P12 + ’Uﬁu pgv (428)
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(n+2)

M 2
+ Vi116 P2

+@&m—

M 2
+ V1114 P1

(n+2)

M 2
+ V1116 P2

+ 11 ’01116p

M
- 31)1111

VM(plaplaPQ | O)
nD—(n— 1)D1} -

D3 —

(2D -3

1111

VM b2,P2,P1 | 0)
2 (n—2)D

n — 1 D1:| - 31)f/1flﬁp12

1112

’Ulllﬁp% [6 (n—2)D—-(n—1)(9D; —11 Dg)}
1115} P12 {(n —-2)D-3(n—-1) Dl}

2(n—2)D~3(n—1)(D1 - Dy)

(n — 1) (3 Dy + DQ)A

(2D —3D1) —vi,, pi (n— 1) Ds

)

1) + 3 ’Uivlllz DQ

_(n )

2)D—3(n—1)D1}

2(n 2)D — 3(n—1)D1}+901115p1 {nD (n—l)Dl}
-

- 3'01114131 |: D — (n_ 1)D1} +

+ U1115p2
111)p12 —3(”—1)D1} +’U1113p1 {nD (n_l)Dl}

oM pra [(n— 2)D —3(n — 1)D1},

(7’L+2)p2VM(p1,p1,p1 |O) - 3U1111P%D1 +3Uf1112p12D1 - 11Uf1[16p?D1 (n - 1)
oM [3nDD1 +(n+2)DDy— (n—1)Dy (Dy — 9Dy +3D1)}
- 9Uf1{15p£11D1 (n_ 1) + 30,

1115

D, [nD+ (n—1)(2D;s —Dl)]

— (n=1) [oit,pt = 30, bl + 30, Ds| Dy

(7’L+2)p%VM(p2,p2,p2 |O) = [3’0%11 Ds +3U%12 Dy _’Uf/l[mp%Dl (TL— 1) _3Uf/1116p12 D, (n_ 1)} Dy

1116p1 [gnDDl —11 (n+2)DD3+ (n— 1)D1 (11D3 —9D1)}
- 3’03/1[151)% |:2’IIDD1 —3(n+2)DD3s+ (n—1)D, (3D3_2D1):|
—3v 1115p12D1 (n_ 1)+U1113p1 Ds [(n+2)D_ (TL— 1)D1}

+30M, p? [nDD1 —(n+2)DDs+ (n—1)Dy (Ds — Dl)] (429)

We still need the explicit form of the form factors which requires generalized scalars of Eq.(418):

—1

‘/2];/121 n+2 0 2p12 p% p% 0 vé\gm
‘/;1;/122 2 0 P12 0 p% 0 Ug%
‘/;1;/12% _ 0 1 p% piz2 0 0 Ug%
‘/;1;/124 B 0 0 0 p% 0 pi2 U%zz;
‘/2];/125 p% P12 0 0 0 0 v%zs
‘/2];/126 0 2 0 P12 0 p% 1)%28
‘/11;/[21 2 0 P12 0 p% 0 ' ’Uivzlzs
‘/11;{22 0 1 p% piz 0 0 Ulezr)
‘/11;12% _ 0 0 0 p% 0 pi12 Uf2124
‘/;15124 p% piz 0 0 0 0 U%zs
Vises 0 0 pi2 0 pi2 O Ve,
‘/11;/[26 P12 p% 0 0 0 0 ’Uivzlzm
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fole 0 2+4n p% 2p12 0 p% 02 V120
‘/11\1/122 2 0 P12 0 p% 0 20 Uﬁlzs
‘/1]\1/12% 0 0 0 p% 0 pi2 00 Uﬁlm
Vi [ _ 1 0 0 p3 0 p2 0 00 Va7
V111v125 B p% P12 0 0 0 0 00 ’Uivllzs
V111v126 1 0 P12 p% 0 010 ’Uivllzg
‘/1]\1/127 0 2 0 P12 0 p% 02 ’Uﬁlzs
‘/1]\1/128 P12 p% 0 0 0 0 00 Uﬁlzm

For the 111 group we have

(n + 2) ‘/11;/[11 = U1113 pl + Uivlfm ( 3p% + 2p12) + ’Uivllls (Qp% - 4p12 +p§)
+ Uivlfls (11p1 —6pi2 +p2) + U11117

(n + 2) ‘/11;[12 = U1114 pl +2 U1115 (_pl + pl?) + U1116 ( 3p1 + 2]912 +p2) + 11{127 (430)
‘/;];/113 = - f/1114 + 2”%15 + 3Uf1116 ‘/;];/114 = _Uﬁ{lo - ’Uivljllﬁ
‘/1];/115 = 1113 + 3Uﬁm 9’01115 11 ’01116’ ngm = _’Uivl[m' (431)

B.8.4 The V¥ family

Most of the fully saturated rank three tensors in this family can be trivially obtained from the partial
contractions of Eq.(412) and evaluated with the help of Eqs.(419)—(422). Some of them, however, correspond
to contractions leading to irreducible scalar products and, therefore, they require an explicit solution for the
form factors. The latter are given in the following list where we use shorthand notation, P; = p; - P:

P> P V¥ (p1,p1,p2|0) = vls,, p12 [D(P2+p12)+p12(P2p12+P12)
+U1112 {D (P2 +p12)+p12 (P p12+P2)} _Uf(l14DP2p§+U1K115D(P1p12+D)

— 0l [(n = 1) (D P+ P2ply) + Dpus) + V5, D (n - 2),

P2 Py V™ (p2,p2,p110) = vfs,, ply (D + P?p1a + P3) + v, P {D (P12 —P2)+P22p12} VX, D?*(n—2),

V)1, D Pa (pr2 — Po) + 0, D Pa (pr2 + Pa) + vy, [(” —1)P2 (D — Pyp12) — D (n — 2)?12} ,

P2 Py VK(plaplvpl |O) :U1K111 (D+P1p12) (p%—i_D) ‘/11;1(11 D2 (TL—2)
+’01K112 D(D+2P2p12 +p12)+p12 (P p12—|—P1)} 1114D(2P2p12+P1p12+D)

1115D(P1p12+D) 1116 [(TL— 1) (DPl _P12p12) +D(7’L—2)p12},

PQPQP%VK(p27p27p2|O):vlklllpllg2(D+P2p12+P22) 1112F)2 [p12(D+P2)+D(D P2p12):|
05 D Po (s — P5) + v, D Po (pfa + 2 Papra — D)
+’01K116 [angplz—(n—2)D(p%2—|—D)—|—DP22—( 1)P p12:|—|—V111(11D2(n—2)p§. (432)

For some special purpose, one may need to have direct access to the explicit expressions of the form factors,
or of the uncontracted tensors, which is the same. Here is their solution:

‘/212(23 2p12 p% p% 0 - U2K221 - (TL + 2) V2I2(21
(‘/212(21> _ G71 ( U2I;26 > V2I2(24 _ piz 0 p% 0 2223 -2 V2[2<21
‘/;12(22 212210 ’ ‘/;2(20 p% P12 0 0 2225 ‘/;2(22
‘/2226 0 p% 0 p12 U?zzz;
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4 1,1]1,1,3|2 1,1]1,2,2|2 1,1]1,3,1|2 1 1,1]2,1,2|2 1 1,12,2,1|2
‘/111<11_ y |:‘/ | ‘ ‘/‘ | ‘ ‘/‘ ‘ | ‘/‘ ‘ | ‘/‘ | ‘
‘7171 1,1,2|3 ‘rl,l 1,2,1]3 ‘71,2 1,1,3|1 ‘71,2 1,2,2]1 ‘71,2 1,3,1]1 ‘7172 2,1,2|1
K ‘ I K ‘ I K I ‘ K I ‘ K I ‘ K ‘ I

1,2]2,2,1|1 1,2/3,1,1|1 1,2/1,1,2|2 1,2/1,2,1|2 1,2[2,1,1|2 1,2/1,1,1/3
e 7 e A e

1
‘/1[1(12 - 5 {pl 'PV111<11 + lellﬁ

p2 P
-1
‘/11;13 2p12 p% p% 0 U1K111 - (TL + 2) V1[1(11
‘/111<14 _ p% 2pi2 0 p% U1K113 - (TL + 2) ‘/1[1(12
‘/1}1(15 b1 P D2 PO 0 U1K115 - ‘/1}1(11
‘/1}1(16 0 p1 P 0 b2 - Vi U1K114 - 2‘/1[1<12

Note that for the 111 group one form factor must be written in terms of generalized functions. This is
a typical aspect of the procedure where, sometimes, the equations that one obtains are not all linearly

independent.
‘/111(23 ) —1 ( vy )
—a (e ), 433
(v Vi (439)
-1
‘/1[1(21 2 0 p% 0 2p12 0 0 p% U1K121 -n ‘/111(2'3
‘/111(22 1 0 0 0 0 p1- Vi p1- P 0 Uf(l210 - ‘/;;1(24
‘/111(25 0 1 0 0 Pp1- P 0 0 D2 P Uf(l2ll - ‘/;;1(23
Ve _|p-Pp-P 0 0 0 0 0 0 vl L,
‘/1[1(27 2 0 p% 0 0 0 P12 0 le124
‘/111(28 0 0 0 Pb12 0 0 0 p% ’Uﬁz)
‘/111(29 1 0 0 0 p% P12 0 0 Uf(l26
‘/;;1(210 0 0 piz 0 0 0 p% 0 Uf(l2l2
‘/112(21 ) —1 < v )
e 1227 ,
<V112<22 Uf(zzm
-1

‘/1[2(23 n 0 p% 02 2p12 0 02 p% Uf;m -2 ‘/1}2(21

‘/112(24 0n 02 D3 0 2]912 P1 0 U1[;22 -2 ‘/1[;22

‘/112(25 10 P 0 p122 0 0 0 Uf(zzs - ‘/12(21

Vv1[2<26 _ 00 0 0 p1 0 0 P12 U1K225 - ‘/12(22

‘/1[2(27 00 0 pi2 0 p% 0 0 ’01K224

‘/112(28 00 D12 0 p% 02 0 0 le2212

‘/112(29 00 0 02 0 p3 pi2 O Vo1 = Visar

‘/112(210 01 0 D3 0 P12 0 0 U1K2213 - ‘/;2(22

B.8.5 The V¥ family

We obtain tensors with saturated indices in the 111 and 222 groups from the corresponding results in the
VM family by replacing v)7,, and v}, with v . and vf,.. Once again there are saturated tensors leading
to contractions with irreducible scalar products that require an explicit solution for the form factors. The

latter are given in the following list:

P12 p% VH(:LL | /L,pQ) = vfI222 Dpu - vfI228 ng (TL - 1)
— v nDp12—vH (n—l)(D—p%2)+’U$23D3p§

1226 12210

4_

vfI224p12 (TL - l)D +p%2] + lezzs |:(n - 1) Dp% + 2D3p12:| =+ vfme D3a

p12p7 V7 (D2 2, p2) = Vfhss D3 pra + viay, (D P + Dapra) + 200, p12 D1 + v]h,, D1,
VH(p2 |p27p1) = ’Ufl223 D3 + U1H224 D2 + ’Ufl225 (D + 2]?%2) + Ufzzspl%
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VH(p2 |p1ap1) = vf;za pzl1 + vf;zz; p%2 + 2011{225 Ds + ’Uleszi’
p% VH(Napl |M) = ’Uﬁzl D+ ’Uﬁzu Ds + Ulles D,

+ 0t [D (0= 1)+ pla| = ity [D (0= 1) = p] + vitay v,

VH(NaPQ | M) = ’Uflmn p% + Ufll23 pg + Ufll24 D12 + U1H125 D12 + ’Uflme n,
VH(anPQ |p1) = vflmn Ds + lel23 D,y + vfllm p%Q + le125 D, + vflme P12- (434)

The form factors are obtained as follows:

‘/21;23 2p12 p% pi 0 vzlj;zl - (TL + 2) Vzlgzl
1 Vr piz2 0 p; O v, —2V,E
VH - {’UH — D12 VH :|, 2224 — 1 2223 2221
2221 p% 2225 — P 2222 ‘/21;125 p% p122 0 0 vg% _ ‘/212122
‘/22126 0 p1 0 pi2 Uszz4
VA = FV;Q\LHQ,Q Gy LAILIRL 2 E %V3,1\1,1\2,2 _ %VH2,2|1,1|1,2
1
+ 5‘/13,2\1,1\2,1 _ Vg,l\l,l\u] 7
—1
‘/1?13 pg 2p12 0 p% vﬁm - (TL + 2) Vllflz
1 v P 0 pi2 O v
VH —— {’UH — D12 VH :|, 1114 — 2 1113
e p% e . Vv1i115 P12 p% 0 02 Ufllw - ‘/111{11
Vvlills 0 P12 0 P2 U1Hu4 -2 ‘/11;112
1 1 1
T Wl [V;,1\1,3\1,2 n §V1§’1|2"2ll’2 i V;,1|1,2|1.,3 . 5‘/111,1\2,2\2,1 B V[},l\S,l\Q,l i 5VI;.,1|1.,2|2.,2
1
§V;1\2,1\2,2 B V[},l\Q,l\S,l 7
—1
V111{21 2 0n O p% 0 2pi2 p% lelzl
Vllfzz 2 0 0 0 p% 0 P12 0 ’Ufll2'3
‘/111{23 0 1 0 0 0 0 p% P12 Ulle)
‘/111{24 _ 0 0 02 0 0 P12 0 p% UlHl24
‘/111{25 0 0 p1 P12 0 0 0 0 Ullea
‘/11;126 00 0 0 p2 O p% 02 011{127
‘/11?27 0 02 1 0 0 0 P12 D3 vfl210
Vljl{zs P12 P2 0 0 0 0 0 0 vflmn
-1
‘/112{21 0 2 0 n 02 V%) p% 2p12 lezzz
‘/11;22 1 0 1 0 p1 0 P12 0 vfmn
‘/112{23 0 1 0 0 0 0 pz P12 Ulez4
‘/112{24 _ 0 0 0 1 0 0 P P12 Ulez%
‘/112{25 0 0 0 0 0 P12 0 p% U1H226
‘/11;26 p% D12 0 0 0 0 0 0 011{227
V112{27 0 0 0 02 D12 0 p% 0 ’ngg
Vljz{zs 0 0 P12 P2 0 0 0 0 vgmo

C Symmetry properties

Before discussing the symmetry properties of two-loop functions we briefly describe our strategy to
generate Feynman diagrams. We use the GraphShot code [34], written in FORM [35], which uses the same
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logic introduced in [36] and has also been applied to one-loop diagrams in [37]. Well-known packages for
diagram handling are listed in [38].

The basic algorithm is inspired by an efficient way of accounting for combinatorial factors in diagrams
and uses the results of [39)].

GraphShot has a table of all the vertices occurring in the Standard Model, which involves the parti-
cles ~, --- f, ---. Starting from the class of diagrams one wants to evaluate, GraphShot generates all the
graphs by inserting every possible combination of propagators vy, ff, ff, --- in the topology, discarding
those containing non existing vertices. Combinatorial factors are included for each graph corresponding to
the situation where all propagators are scalar and identical. An example is given in Fig. 18. After their

E
Sopp = Cia1

[ S o W

Figure 18: The QED S” graph as generated by GraphShot [34]. The combinatoric factor Ci31 corresponds to the
scalar S* graph with identical lines and is equal to 1/2.

generation, the diagrams are ready for evaluation or for a check of the corresponding WST identities of the
theory. For the latter case we always produce a full scalarization of the result and look for symmetries among
the various terms in the result. A typical intermediate output of GraphShot is given in Eq.(301).

Let us give an example of the symmetries: for the S* family we have the inverse propagators [1] =
@ +m3, 2], = (g1 — g2 +p)? +m3, and [3], = ¢5 + m3. Consider a set of transformations (where & stands
for ‘followed by’):

a) . g —=a+e—po@— —q,
b) 41 <42,
) @ —@tatp (435)

they correspond to symmetries specified by

a) — S;'(p,{m}123) = S(j‘(—p, {m}a13),
S7(p, {m}i23) = =7 (=p, {m}213) + S5 (=p, {m}a13) — S’ (—p, {m}213),
S5 (p, {m}123) = S (—p, {m}213),
b) — S (p,{m}123) = S (=p, {m}s21),
Sf(pv {m}123) —SA( —p, {m}321),
¢) — S5 (p,{m}i2s) = S5 (p, {m}132),
S7(p, {m}i23) = ST (p, {m}132),
S3H(p, {m}i23) = =S5 (p, {m}132) + S (p, {m}132) + S5 (p, {m}132). (436)

For the other two-point functions we recall the conventions: each propagator will be denoted by [i] = k2 +m?
and

C, ki =qi, k2 =q1 — q2, k3 = qa, k4 = q2 + p,
D, k1 =q, ka=q +p, ks=q —q, ks =g, ks = q2 + p,
E, k1 =q1, ka=q — q2, k3 = 2, ks =q2+p, ks = qa.



We simply indicate the symmetry property of the scalar configurations; for instance, a change of variables
q1 — q1 + g2 followed by ga — —qo corresponds to a symmetry of the S¢ family with respect to the exchange

p — —p and my <> ma:

S e ®e——@, = p— —p, m e mg,
SE : ms < ms,

G1—=q+q g — —q, = p——p M My,
SP e g, > mipemy, mg e ms,

Q1 —q1—pP, (g2—q2—DpP, =My <>M2, My Ms.

(437)

Finally, let us consider the symmetries of the three-point functions; for the general class V'N' we obtain

VIV i it e B g — —q2, = pi — —Pi, My > Mo,
vV ms < mg,

my <> ms , p1 < P, po2 — —pa.

For symmetries in the V¢, V¥ and V¥ families we have

¢ .
|4 . q1 < 42, = M2 < My, miy < ms, P1 < —p2.
K .
Vv T ¢ — ¢ — P, = mi < mo, Mg mg, p1< —Po.
H
Vv D q1 g2, =M1 Mms, M2 Mg, M3 <> My, P1 <> P2.

All symmetry properties refer to the scalar configurations.
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